Simple Lie algebras over fields of positive characteristic, I, Structure theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
New York
Walter de Gruyter
[2004]
|
Schriftenreihe: | de Gruyter expositions in mathematics
38 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes bibliographical references (p. [527]-537) and index Simple Lie Algebras over Fieldsof Positive Characteristic; Contents; Introduction; Chapter 1Toral subalgebras in p-envelopes; Chapter 2Lie algebras of special derivations; Chapter 3Derivation simple algebras and modules; Chapter 4Simple Lie algebras; Chapter 5Recognition theorems; Chapter 6The isomorphism problem; Chapter 7Structure of simple Lie algebras; Chapter 8Pairings of induced modules; Chapter 9Toral rank 1 Lie algebras; Notation; Bibliography; Index The problem of classifying the finite-dimensional simple Lie algebras over fields of characteristic p & 0 is a long-standing one. Work on this question during the last 35 years has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p & 5 a finite-dimensional restricted simple Lie algebra is classical or of Cartan type |
Beschreibung: | 1 Online-Ressource (viii, 540 p.) |
ISBN: | 9783110197945 3110197944 |
DOI: | 10.1515/9783110197945 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043127916 | ||
003 | DE-604 | ||
005 | 20190611 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2004 |||| o||u| ||||||ger d | ||
020 | |a 9783110197945 |c electronic bk. |9 978-3-11-019794-5 | ||
020 | |a 3110197944 |c electronic bk. |9 3-11-019794-4 | ||
024 | 7 | |a 10.1515/9783110197945 |2 doi | |
035 | |a (OCoLC)435620160 | ||
035 | |a (DE-599)BVBBV043127916 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512/.55 |2 22 | |
100 | 1 | |a Strade, Helmut |d 1942- |0 (DE-588)106816659 |4 aut | |
245 | 1 | 0 | |a Simple Lie algebras over fields of positive characteristic, I, Structure theory |c by Helmut Strade |
246 | 1 | 3 | |a Structure theory |
264 | 1 | |a New York |b Walter de Gruyter |c [2004] | |
264 | 4 | |c © 2004 | |
300 | |a 1 Online-Ressource (viii, 540 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a de Gruyter expositions in mathematics |v 38 | |
500 | |a Includes bibliographical references (p. [527]-537) and index | ||
500 | |a Simple Lie Algebras over Fieldsof Positive Characteristic; Contents; Introduction; Chapter 1Toral subalgebras in p-envelopes; Chapter 2Lie algebras of special derivations; Chapter 3Derivation simple algebras and modules; Chapter 4Simple Lie algebras; Chapter 5Recognition theorems; Chapter 6The isomorphism problem; Chapter 7Structure of simple Lie algebras; Chapter 8Pairings of induced modules; Chapter 9Toral rank 1 Lie algebras; Notation; Bibliography; Index | ||
500 | |a The problem of classifying the finite-dimensional simple Lie algebras over fields of characteristic p & 0 is a long-standing one. Work on this question during the last 35 years has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p & 5 a finite-dimensional restricted simple Lie algebra is classical or of Cartan type | ||
650 | 7 | |a MATHEMATICS / Algebra / Linear |2 bisacsh | |
650 | 7 | |a Lie algebras |2 fast | |
650 | 4 | |a Lie algebras | |
830 | 0 | |a de Gruyter expositions in mathematics |v 38 |w (DE-604)BV044998893 |9 38 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110197945 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-EXM |a ZDB-4-EBA | ||
940 | 1 | |q FAW_PDA_EBA | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028552107 |
Datensatz im Suchindex
_version_ | 1804175564198641664 |
---|---|
any_adam_object | |
author | Strade, Helmut 1942- |
author_GND | (DE-588)106816659 |
author_facet | Strade, Helmut 1942- |
author_role | aut |
author_sort | Strade, Helmut 1942- |
author_variant | h s hs |
building | Verbundindex |
bvnumber | BV043127916 |
collection | ZDB-23-EXM ZDB-4-EBA |
ctrlnum | (OCoLC)435620160 (DE-599)BVBBV043127916 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110197945 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02416nmm a2200445zcb4500</leader><controlfield tag="001">BV043127916</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190611 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2004 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110197945</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-3-11-019794-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110197944</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">3-11-019794-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110197945</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)435620160</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043127916</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Strade, Helmut</subfield><subfield code="d">1942-</subfield><subfield code="0">(DE-588)106816659</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simple Lie algebras over fields of positive characteristic, I, Structure theory</subfield><subfield code="c">by Helmut Strade</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Structure theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Walter de Gruyter</subfield><subfield code="c">[2004]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (viii, 540 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">de Gruyter expositions in mathematics</subfield><subfield code="v">38</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [527]-537) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Simple Lie Algebras over Fieldsof Positive Characteristic; Contents; Introduction; Chapter 1Toral subalgebras in p-envelopes; Chapter 2Lie algebras of special derivations; Chapter 3Derivation simple algebras and modules; Chapter 4Simple Lie algebras; Chapter 5Recognition theorems; Chapter 6The isomorphism problem; Chapter 7Structure of simple Lie algebras; Chapter 8Pairings of induced modules; Chapter 9Toral rank 1 Lie algebras; Notation; Bibliography; Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The problem of classifying the finite-dimensional simple Lie algebras over fields of characteristic p & 0 is a long-standing one. Work on this question during the last 35 years has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p & 5 a finite-dimensional restricted simple Lie algebra is classical or of Cartan type</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Linear</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">de Gruyter expositions in mathematics</subfield><subfield code="v">38</subfield><subfield code="w">(DE-604)BV044998893</subfield><subfield code="9">38</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110197945</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-EXM</subfield><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028552107</subfield></datafield></record></collection> |
id | DE-604.BV043127916 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:17Z |
institution | BVB |
isbn | 9783110197945 3110197944 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028552107 |
oclc_num | 435620160 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (viii, 540 p.) |
psigel | ZDB-23-EXM ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Walter de Gruyter |
record_format | marc |
series | de Gruyter expositions in mathematics |
series2 | de Gruyter expositions in mathematics |
spelling | Strade, Helmut 1942- (DE-588)106816659 aut Simple Lie algebras over fields of positive characteristic, I, Structure theory by Helmut Strade Structure theory New York Walter de Gruyter [2004] © 2004 1 Online-Ressource (viii, 540 p.) txt rdacontent c rdamedia cr rdacarrier de Gruyter expositions in mathematics 38 Includes bibliographical references (p. [527]-537) and index Simple Lie Algebras over Fieldsof Positive Characteristic; Contents; Introduction; Chapter 1Toral subalgebras in p-envelopes; Chapter 2Lie algebras of special derivations; Chapter 3Derivation simple algebras and modules; Chapter 4Simple Lie algebras; Chapter 5Recognition theorems; Chapter 6The isomorphism problem; Chapter 7Structure of simple Lie algebras; Chapter 8Pairings of induced modules; Chapter 9Toral rank 1 Lie algebras; Notation; Bibliography; Index The problem of classifying the finite-dimensional simple Lie algebras over fields of characteristic p & 0 is a long-standing one. Work on this question during the last 35 years has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p & 5 a finite-dimensional restricted simple Lie algebra is classical or of Cartan type MATHEMATICS / Algebra / Linear bisacsh Lie algebras fast Lie algebras de Gruyter expositions in mathematics 38 (DE-604)BV044998893 38 https://doi.org/10.1515/9783110197945 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Strade, Helmut 1942- Simple Lie algebras over fields of positive characteristic, I, Structure theory de Gruyter expositions in mathematics MATHEMATICS / Algebra / Linear bisacsh Lie algebras fast Lie algebras |
title | Simple Lie algebras over fields of positive characteristic, I, Structure theory |
title_alt | Structure theory |
title_auth | Simple Lie algebras over fields of positive characteristic, I, Structure theory |
title_exact_search | Simple Lie algebras over fields of positive characteristic, I, Structure theory |
title_full | Simple Lie algebras over fields of positive characteristic, I, Structure theory by Helmut Strade |
title_fullStr | Simple Lie algebras over fields of positive characteristic, I, Structure theory by Helmut Strade |
title_full_unstemmed | Simple Lie algebras over fields of positive characteristic, I, Structure theory by Helmut Strade |
title_short | Simple Lie algebras over fields of positive characteristic, I, Structure theory |
title_sort | simple lie algebras over fields of positive characteristic i structure theory |
topic | MATHEMATICS / Algebra / Linear bisacsh Lie algebras fast Lie algebras |
topic_facet | MATHEMATICS / Algebra / Linear Lie algebras |
url | https://doi.org/10.1515/9783110197945 |
volume_link | (DE-604)BV044998893 |
work_keys_str_mv | AT stradehelmut simpleliealgebrasoverfieldsofpositivecharacteristicistructuretheory AT stradehelmut structuretheory |