Invariant algebras and geometric reasoning:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singarore
World Scientific
c2008
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 495-504) and index The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics - among them, Grassmann-Cayley algebra and geometric algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author's most recent, original development of Grassmann-Cayley algebra and geometric algebra and their applications in automated reasoning of classical geometries. It includes three advanced invariant algebras - Cayley bracket algebra, conformal geometric algebra, and null bracket algebra - for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing. Apart from their applications in discrete and computational geometry, the new languages are currently being used in computer vision, graphics and robotics by many researchers worldwide |
Beschreibung: | 1 Online-Ressource (xiv, 518 p.) |
ISBN: | 1281919004 9781281919007 9789812708083 9789812770110 9812708081 9812770119 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043126650 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2008 |||| o||u| ||||||eng d | ||
020 | |a 1281919004 |9 1-281-91900-4 | ||
020 | |a 9781281919007 |9 978-1-281-91900-7 | ||
020 | |a 9789812708083 |9 978-981-270-808-3 | ||
020 | |a 9789812770110 |c electronic bk. |9 978-981-277-011-0 | ||
020 | |a 9812708081 |9 981-270-808-1 | ||
020 | |a 9812770119 |c electronic bk. |9 981-277-011-9 | ||
035 | |a (OCoLC)560635800 | ||
035 | |a (DE-599)BVBBV043126650 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512/.57 |2 22 | |
100 | 1 | |a Li, Hongbo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Invariant algebras and geometric reasoning |c Hongbo Li |
264 | 1 | |a Singarore |b World Scientific |c c2008 | |
300 | |a 1 Online-Ressource (xiv, 518 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 495-504) and index | ||
500 | |a The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics - among them, Grassmann-Cayley algebra and geometric algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author's most recent, original development of Grassmann-Cayley algebra and geometric algebra and their applications in automated reasoning of classical geometries. It includes three advanced invariant algebras - Cayley bracket algebra, conformal geometric algebra, and null bracket algebra - for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing. Apart from their applications in discrete and computational geometry, the new languages are currently being used in computer vision, graphics and robotics by many researchers worldwide | ||
650 | 7 | |a MATHEMATICS / Algebra / Linear |2 bisacsh | |
650 | 7 | |a Clifford algebras |2 fast | |
650 | 7 | |a Invariants |2 fast | |
650 | 7 | |a Symmetry (Mathematics) |2 fast | |
650 | 4 | |a Clifford algebras | |
650 | 4 | |a Invariants | |
650 | 4 | |a Symmetry (Mathematics) | |
650 | 0 | 7 | |a Geometrische Invariantentheorie |0 (DE-588)4156712-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Projektive Geometrie |0 (DE-588)4047436-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Clifford-Algebra |0 (DE-588)4199958-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Algebra |0 (DE-588)4156707-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrische Algebra |0 (DE-588)4156707-9 |D s |
689 | 0 | 1 | |a Clifford-Algebra |0 (DE-588)4199958-7 |D s |
689 | 0 | 2 | |a Projektive Geometrie |0 (DE-588)4047436-7 |D s |
689 | 0 | 3 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |D s |
689 | 0 | 4 | |a Geometrische Invariantentheorie |0 (DE-588)4156712-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=236092 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028550841 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=236092 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=236092 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175561632776192 |
---|---|
any_adam_object | |
author | Li, Hongbo |
author_facet | Li, Hongbo |
author_role | aut |
author_sort | Li, Hongbo |
author_variant | h l hl |
building | Verbundindex |
bvnumber | BV043126650 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)560635800 (DE-599)BVBBV043126650 |
dewey-full | 512/.57 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.57 |
dewey-search | 512/.57 |
dewey-sort | 3512 257 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03634nmm a2200625zc 4500</leader><controlfield tag="001">BV043126650</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281919004</subfield><subfield code="9">1-281-91900-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281919007</subfield><subfield code="9">978-1-281-91900-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812708083</subfield><subfield code="9">978-981-270-808-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812770110</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-277-011-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812708081</subfield><subfield code="9">981-270-808-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812770119</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-277-011-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)560635800</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043126650</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.57</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Hongbo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Invariant algebras and geometric reasoning</subfield><subfield code="c">Hongbo Li</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singarore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 518 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 495-504) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics - among them, Grassmann-Cayley algebra and geometric algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author's most recent, original development of Grassmann-Cayley algebra and geometric algebra and their applications in automated reasoning of classical geometries. It includes three advanced invariant algebras - Cayley bracket algebra, conformal geometric algebra, and null bracket algebra - for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing. Apart from their applications in discrete and computational geometry, the new languages are currently being used in computer vision, graphics and robotics by many researchers worldwide</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Linear</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Clifford algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Invariants</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symmetry (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clifford algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Invariantentheorie</subfield><subfield code="0">(DE-588)4156712-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Projektive Geometrie</subfield><subfield code="0">(DE-588)4047436-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Algebra</subfield><subfield code="0">(DE-588)4156707-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Algebra</subfield><subfield code="0">(DE-588)4156707-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Projektive Geometrie</subfield><subfield code="0">(DE-588)4047436-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Geometrische Invariantentheorie</subfield><subfield code="0">(DE-588)4156712-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=236092</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028550841</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=236092</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=236092</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043126650 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:15Z |
institution | BVB |
isbn | 1281919004 9781281919007 9789812708083 9789812770110 9812708081 9812770119 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028550841 |
oclc_num | 560635800 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiv, 518 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific |
record_format | marc |
spelling | Li, Hongbo Verfasser aut Invariant algebras and geometric reasoning Hongbo Li Singarore World Scientific c2008 1 Online-Ressource (xiv, 518 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (p. 495-504) and index The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics - among them, Grassmann-Cayley algebra and geometric algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author's most recent, original development of Grassmann-Cayley algebra and geometric algebra and their applications in automated reasoning of classical geometries. It includes three advanced invariant algebras - Cayley bracket algebra, conformal geometric algebra, and null bracket algebra - for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing. Apart from their applications in discrete and computational geometry, the new languages are currently being used in computer vision, graphics and robotics by many researchers worldwide MATHEMATICS / Algebra / Linear bisacsh Clifford algebras fast Invariants fast Symmetry (Mathematics) fast Clifford algebras Invariants Symmetry (Mathematics) Geometrische Invariantentheorie (DE-588)4156712-2 gnd rswk-swf Euklidische Geometrie (DE-588)4137555-5 gnd rswk-swf Projektive Geometrie (DE-588)4047436-7 gnd rswk-swf Clifford-Algebra (DE-588)4199958-7 gnd rswk-swf Geometrische Algebra (DE-588)4156707-9 gnd rswk-swf Geometrische Algebra (DE-588)4156707-9 s Clifford-Algebra (DE-588)4199958-7 s Projektive Geometrie (DE-588)4047436-7 s Euklidische Geometrie (DE-588)4137555-5 s Geometrische Invariantentheorie (DE-588)4156712-2 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=236092 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Li, Hongbo Invariant algebras and geometric reasoning MATHEMATICS / Algebra / Linear bisacsh Clifford algebras fast Invariants fast Symmetry (Mathematics) fast Clifford algebras Invariants Symmetry (Mathematics) Geometrische Invariantentheorie (DE-588)4156712-2 gnd Euklidische Geometrie (DE-588)4137555-5 gnd Projektive Geometrie (DE-588)4047436-7 gnd Clifford-Algebra (DE-588)4199958-7 gnd Geometrische Algebra (DE-588)4156707-9 gnd |
subject_GND | (DE-588)4156712-2 (DE-588)4137555-5 (DE-588)4047436-7 (DE-588)4199958-7 (DE-588)4156707-9 |
title | Invariant algebras and geometric reasoning |
title_auth | Invariant algebras and geometric reasoning |
title_exact_search | Invariant algebras and geometric reasoning |
title_full | Invariant algebras and geometric reasoning Hongbo Li |
title_fullStr | Invariant algebras and geometric reasoning Hongbo Li |
title_full_unstemmed | Invariant algebras and geometric reasoning Hongbo Li |
title_short | Invariant algebras and geometric reasoning |
title_sort | invariant algebras and geometric reasoning |
topic | MATHEMATICS / Algebra / Linear bisacsh Clifford algebras fast Invariants fast Symmetry (Mathematics) fast Clifford algebras Invariants Symmetry (Mathematics) Geometrische Invariantentheorie (DE-588)4156712-2 gnd Euklidische Geometrie (DE-588)4137555-5 gnd Projektive Geometrie (DE-588)4047436-7 gnd Clifford-Algebra (DE-588)4199958-7 gnd Geometrische Algebra (DE-588)4156707-9 gnd |
topic_facet | MATHEMATICS / Algebra / Linear Clifford algebras Invariants Symmetry (Mathematics) Geometrische Invariantentheorie Euklidische Geometrie Projektive Geometrie Clifford-Algebra Geometrische Algebra |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=236092 |
work_keys_str_mv | AT lihongbo invariantalgebrasandgeometricreasoning |