Approximation by complex Bernstein and convolution type operators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
©2009
|
Schriftenreihe: | Series on concrete and applicable mathematics
v. 8 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 Includes bibliographical references (pages 327-336) and index 1. Bernstein-type operators of one complex variable. 1.0. Auxiliary results in complex analysis. 1.1. Berstein polynomials. 1.2. Iterates of Bernstein polynomials. 1.3. Generalized Voronovskaja theorems for Bernstein polynomials. 1.4. Butzer's linear combination of Bernstein polynomials. 1.5. q-Bernstein polynomials. 1.6. Bernstein-Stancu polynomials. 1.7. Bernstein-Kantorovich type polynomials. 1.8. Favard-Szász-Mirakjan operators. 1.9. Baskakov operators. 1.10. Balázs-Szabados operators. 1.11. Bibliographical notes and open problems -- 2. Bernstein-type operators of several complex variables. 2.1. Introduction. 2.2. Bernstein polynomials. 2.3. Favard-Szász-Mirakjan operators. 2.4. Baskakov operators. 2.5. Bibliographical notes and open problems -- 3. Complex convolutions. 3.1. Linear polynomial convolutions. 3.2. Linear non-polynomial convolutions. 3.3. Nonlinear complex convolutions. 3.4. Bibliographical notes and open problems The monograph, as its first main goal, aims to study the overconvergence phenomenon of important classes of Bernstein-type operators of one or several complex variables, that is, to extend their quantitative convergence properties to larger sets in the complex plane rather than the real intervals. The operators studied are of the following types : Bernstein, Bernstein-Faber, Bernstein-Butzer, q-Bernstein, Bernstein-Stancu, Bernstein-Kantorovich, Favard-Szász-Mirakjan, Baskakov and Balázs-Szabados. The second main objective is to provide a study of the approximation and geometric properties of several types of complex convolutions : the de la Vallée Poussin, Fejér, Riesz-Zygmund, Jackson, Rogosinski, Picard, Poisson-Cauchy, Gauss-Weierstrass, q-Picard, q-Gauss-Weierstrass, Post-Widder, rotation-invariant, Sikkema and nonlinear. Several applications to partial differential equations (PDEs) are also presented. Many of the open problems encountered in the studies are proposed at the end of each chapter. For further research, the monograph suggests and advocates similar studies for other complex Bernstein-type operators, and for other linear and nonlinear convolutions |
Beschreibung: | 1 Online-Ressource (xii, 337 pages) |
ISBN: | 9789814282420 9789814282437 9814282421 981428243X |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043126290 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2009 |||| o||u| ||||||eng d | ||
020 | |a 9789814282420 |9 978-981-4282-42-0 | ||
020 | |a 9789814282437 |c electronic bk. |9 978-981-4282-43-7 | ||
020 | |a 9814282421 |9 981-4282-42-1 | ||
020 | |a 981428243X |c electronic bk. |9 981-4282-43-X | ||
035 | |a (OCoLC)612412955 | ||
035 | |a (DE-599)BVBBV043126290 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 511.4 |2 22 | |
100 | 1 | |a Gal, Sorin G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Approximation by complex Bernstein and convolution type operators |c Sorin G. Gal |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c ©2009 | |
300 | |a 1 Online-Ressource (xii, 337 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series on concrete and applicable mathematics |v v. 8 | |
500 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 | ||
500 | |a Includes bibliographical references (pages 327-336) and index | ||
500 | |a 1. Bernstein-type operators of one complex variable. 1.0. Auxiliary results in complex analysis. 1.1. Berstein polynomials. 1.2. Iterates of Bernstein polynomials. 1.3. Generalized Voronovskaja theorems for Bernstein polynomials. 1.4. Butzer's linear combination of Bernstein polynomials. 1.5. q-Bernstein polynomials. 1.6. Bernstein-Stancu polynomials. 1.7. Bernstein-Kantorovich type polynomials. 1.8. Favard-Szász-Mirakjan operators. 1.9. Baskakov operators. 1.10. Balázs-Szabados operators. 1.11. Bibliographical notes and open problems -- 2. Bernstein-type operators of several complex variables. 2.1. Introduction. 2.2. Bernstein polynomials. 2.3. Favard-Szász-Mirakjan operators. 2.4. Baskakov operators. 2.5. Bibliographical notes and open problems -- 3. Complex convolutions. 3.1. Linear polynomial convolutions. 3.2. Linear non-polynomial convolutions. 3.3. Nonlinear complex convolutions. 3.4. Bibliographical notes and open problems | ||
500 | |a The monograph, as its first main goal, aims to study the overconvergence phenomenon of important classes of Bernstein-type operators of one or several complex variables, that is, to extend their quantitative convergence properties to larger sets in the complex plane rather than the real intervals. The operators studied are of the following types : Bernstein, Bernstein-Faber, Bernstein-Butzer, q-Bernstein, Bernstein-Stancu, Bernstein-Kantorovich, Favard-Szász-Mirakjan, Baskakov and Balázs-Szabados. The second main objective is to provide a study of the approximation and geometric properties of several types of complex convolutions : the de la Vallée Poussin, Fejér, Riesz-Zygmund, Jackson, Rogosinski, Picard, Poisson-Cauchy, Gauss-Weierstrass, q-Picard, q-Gauss-Weierstrass, Post-Widder, rotation-invariant, Sikkema and nonlinear. Several applications to partial differential equations (PDEs) are also presented. Many of the open problems encountered in the studies are proposed at the end of each chapter. For further research, the monograph suggests and advocates similar studies for other complex Bernstein-type operators, and for other linear and nonlinear convolutions | ||
650 | 7 | |a MATHEMATICS / General |2 bisacsh | |
650 | 7 | |a Approximation theory |2 fast | |
650 | 7 | |a Bernstein polynomials |2 fast | |
650 | 7 | |a Convolutions (Mathematics) |2 fast | |
650 | 7 | |a Operator theory |2 fast | |
650 | 4 | |a Approximation theory | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Bernstein polynomials | |
650 | 4 | |a Convolutions (Mathematics) | |
710 | 2 | |a World Scientific (Firm) |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340525 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028550480 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340525 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340525 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175560866267136 |
---|---|
any_adam_object | |
author | Gal, Sorin G. |
author_facet | Gal, Sorin G. |
author_role | aut |
author_sort | Gal, Sorin G. |
author_variant | s g g sg sgg |
building | Verbundindex |
bvnumber | BV043126290 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)612412955 (DE-599)BVBBV043126290 |
dewey-full | 511.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.4 |
dewey-search | 511.4 |
dewey-sort | 3511.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04384nmm a2200529zcb4500</leader><controlfield tag="001">BV043126290</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814282420</subfield><subfield code="9">978-981-4282-42-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814282437</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4282-43-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814282421</subfield><subfield code="9">981-4282-42-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981428243X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4282-43-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)612412955</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043126290</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.4</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gal, Sorin G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Approximation by complex Bernstein and convolution type operators</subfield><subfield code="c">Sorin G. Gal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">©2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 337 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series on concrete and applicable mathematics</subfield><subfield code="v">v. 8</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 327-336) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Bernstein-type operators of one complex variable. 1.0. Auxiliary results in complex analysis. 1.1. Berstein polynomials. 1.2. Iterates of Bernstein polynomials. 1.3. Generalized Voronovskaja theorems for Bernstein polynomials. 1.4. Butzer's linear combination of Bernstein polynomials. 1.5. q-Bernstein polynomials. 1.6. Bernstein-Stancu polynomials. 1.7. Bernstein-Kantorovich type polynomials. 1.8. Favard-Szász-Mirakjan operators. 1.9. Baskakov operators. 1.10. Balázs-Szabados operators. 1.11. Bibliographical notes and open problems -- 2. Bernstein-type operators of several complex variables. 2.1. Introduction. 2.2. Bernstein polynomials. 2.3. Favard-Szász-Mirakjan operators. 2.4. Baskakov operators. 2.5. Bibliographical notes and open problems -- 3. Complex convolutions. 3.1. Linear polynomial convolutions. 3.2. Linear non-polynomial convolutions. 3.3. Nonlinear complex convolutions. 3.4. Bibliographical notes and open problems</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The monograph, as its first main goal, aims to study the overconvergence phenomenon of important classes of Bernstein-type operators of one or several complex variables, that is, to extend their quantitative convergence properties to larger sets in the complex plane rather than the real intervals. The operators studied are of the following types : Bernstein, Bernstein-Faber, Bernstein-Butzer, q-Bernstein, Bernstein-Stancu, Bernstein-Kantorovich, Favard-Szász-Mirakjan, Baskakov and Balázs-Szabados. The second main objective is to provide a study of the approximation and geometric properties of several types of complex convolutions : the de la Vallée Poussin, Fejér, Riesz-Zygmund, Jackson, Rogosinski, Picard, Poisson-Cauchy, Gauss-Weierstrass, q-Picard, q-Gauss-Weierstrass, Post-Widder, rotation-invariant, Sikkema and nonlinear. Several applications to partial differential equations (PDEs) are also presented. Many of the open problems encountered in the studies are proposed at the end of each chapter. For further research, the monograph suggests and advocates similar studies for other complex Bernstein-type operators, and for other linear and nonlinear convolutions</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Approximation theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bernstein polynomials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convolutions (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operator theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bernstein polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolutions (Mathematics)</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340525</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028550480</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340525</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340525</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043126290 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:14Z |
institution | BVB |
isbn | 9789814282420 9789814282437 9814282421 981428243X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028550480 |
oclc_num | 612412955 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xii, 337 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Series on concrete and applicable mathematics |
spelling | Gal, Sorin G. Verfasser aut Approximation by complex Bernstein and convolution type operators Sorin G. Gal Singapore World Scientific Pub. Co. ©2009 1 Online-Ressource (xii, 337 pages) txt rdacontent c rdamedia cr rdacarrier Series on concrete and applicable mathematics v. 8 Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 Includes bibliographical references (pages 327-336) and index 1. Bernstein-type operators of one complex variable. 1.0. Auxiliary results in complex analysis. 1.1. Berstein polynomials. 1.2. Iterates of Bernstein polynomials. 1.3. Generalized Voronovskaja theorems for Bernstein polynomials. 1.4. Butzer's linear combination of Bernstein polynomials. 1.5. q-Bernstein polynomials. 1.6. Bernstein-Stancu polynomials. 1.7. Bernstein-Kantorovich type polynomials. 1.8. Favard-Szász-Mirakjan operators. 1.9. Baskakov operators. 1.10. Balázs-Szabados operators. 1.11. Bibliographical notes and open problems -- 2. Bernstein-type operators of several complex variables. 2.1. Introduction. 2.2. Bernstein polynomials. 2.3. Favard-Szász-Mirakjan operators. 2.4. Baskakov operators. 2.5. Bibliographical notes and open problems -- 3. Complex convolutions. 3.1. Linear polynomial convolutions. 3.2. Linear non-polynomial convolutions. 3.3. Nonlinear complex convolutions. 3.4. Bibliographical notes and open problems The monograph, as its first main goal, aims to study the overconvergence phenomenon of important classes of Bernstein-type operators of one or several complex variables, that is, to extend their quantitative convergence properties to larger sets in the complex plane rather than the real intervals. The operators studied are of the following types : Bernstein, Bernstein-Faber, Bernstein-Butzer, q-Bernstein, Bernstein-Stancu, Bernstein-Kantorovich, Favard-Szász-Mirakjan, Baskakov and Balázs-Szabados. The second main objective is to provide a study of the approximation and geometric properties of several types of complex convolutions : the de la Vallée Poussin, Fejér, Riesz-Zygmund, Jackson, Rogosinski, Picard, Poisson-Cauchy, Gauss-Weierstrass, q-Picard, q-Gauss-Weierstrass, Post-Widder, rotation-invariant, Sikkema and nonlinear. Several applications to partial differential equations (PDEs) are also presented. Many of the open problems encountered in the studies are proposed at the end of each chapter. For further research, the monograph suggests and advocates similar studies for other complex Bernstein-type operators, and for other linear and nonlinear convolutions MATHEMATICS / General bisacsh Approximation theory fast Bernstein polynomials fast Convolutions (Mathematics) fast Operator theory fast Approximation theory Operator theory Bernstein polynomials Convolutions (Mathematics) World Scientific (Firm) Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340525 Aggregator Volltext |
spellingShingle | Gal, Sorin G. Approximation by complex Bernstein and convolution type operators MATHEMATICS / General bisacsh Approximation theory fast Bernstein polynomials fast Convolutions (Mathematics) fast Operator theory fast Approximation theory Operator theory Bernstein polynomials Convolutions (Mathematics) |
title | Approximation by complex Bernstein and convolution type operators |
title_auth | Approximation by complex Bernstein and convolution type operators |
title_exact_search | Approximation by complex Bernstein and convolution type operators |
title_full | Approximation by complex Bernstein and convolution type operators Sorin G. Gal |
title_fullStr | Approximation by complex Bernstein and convolution type operators Sorin G. Gal |
title_full_unstemmed | Approximation by complex Bernstein and convolution type operators Sorin G. Gal |
title_short | Approximation by complex Bernstein and convolution type operators |
title_sort | approximation by complex bernstein and convolution type operators |
topic | MATHEMATICS / General bisacsh Approximation theory fast Bernstein polynomials fast Convolutions (Mathematics) fast Operator theory fast Approximation theory Operator theory Bernstein polynomials Convolutions (Mathematics) |
topic_facet | MATHEMATICS / General Approximation theory Bernstein polynomials Convolutions (Mathematics) Operator theory |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340525 |
work_keys_str_mv | AT galsoring approximationbycomplexbernsteinandconvolutiontypeoperators AT worldscientificfirm approximationbycomplexbernsteinandconvolutiontypeoperators |