Heisenberg's quantum mechanics:
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Razavy, Mohsen (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific c2011
Schlagworte:
Online-Zugang:FAW01
FAW02
Volltext
Beschreibung:Includes bibliographical references and index
Machine generated contents note - 1.1 - The Lagrangian and the Hamilton Principle -- - 1.2 - Noether's Theorem -- - 1.3 - The Hamiltonian Formulation -- - 1.4 - Canonical Transformation -- - 1.5 - Action-Angle Variables -- - 1.6 - Poisson Brackets -- - 1.7 - Time Development of Dynamical Variables and Poisson Brackets -- - 1.8 - Infinitesimal Canonical Transformation -- - 1.9 - Action Principle with Variable End Points -- - 1.10 - Symmetry and Degeneracy in Classical Dynamics -- - 1.11 - Closed Orbits and Accidental Degeneracy -- - 1.12 - Time-Dependent Exact Invariants -- - 2.1 - Equivalence of Wave and Matrix Mechanics -- - 3.1 - Vectors and Vector Spaces -- - 3.2 - Special Types of Operators -- - 3.3 - Vector Calculus for the Operators -- - 3.4 - Construction of Hermitian and Self-Adjoint Operators -- - 3.5 - Symmetrization Rule -- - 3.6 - Weyl's Rule -- - 3.7 - Dirac's Rule -- - 3.8 - Von Neumann's Rules -- - 3.9 - Self-Adjoint Operators -- - 3.10 - Momentum Operator in a Curvilinear Coordinates --
14.2 - Two Solvable Problems -- - 14.3 - Time-Dependent Scattering Theory -- - 14.4 - The Scattering Matrix -- - 14.5 - The Lippmann[-]Schwinger Equation -- - 14.6 - Analytical Properties of the Radial Wave Function -- - 14.7 - The Jost Function -- - 14.8 - Zeros of the Jost Function and Bound Sates -- - 14.9 - Dispersion Relation -- - 14.10 - Central Local Potentials having Identical Phase Shifts and Bound States -- - 14.11 - The Levinson Theorem -- - 14.12 - Number of Bound States for a Given Partial Wave -- - 14.13 - Analyticity of the S-Matrix and the Principle of Casuality -- - 14.14 - Resonance Scattering -- - 14.15 - The Born Series -- - 14.16 - Impact Parameter Representation of the Scattering Amplitude -- - 14.17 - Determination of the Impact Parameter Phase Shift from the Differential Cross Section -- - 14.18 - Elastic Scattering of Identical Particles -- - 14.19 - Transition Probability -- - 14.20 - Transition Probabilities for Forced Harmonic Oscillator -- - 15.1 - Diffraction in Time -- - 15.2 - High Energy Scattering from an Absorptive Target --
9.8 - The Hydrogen Atom -- - 9.9 - Calculation of the Energy Eigenvalues Using the Runge[-]Lenz Vector -- - 9.10 - Classical Limit of Hydrogen Atom -- - 9.11 - Self-Adjoint Ladder Operator -- - 9.12 - Self-Adjoint Ladder Operator tiff Angular Momentum -- - 9.13 - Generalized Spin Operators -- - 9.14 - The Ladder Operator -- - 10.1 - Discrete-Time Formulation of the Heisenberg's Equations of Motion -- - 10.2 - Quantum Tunneling Using Discrete-Time Formulation -- - 10.3 - Determination of Eigenvalues from Finite-Difference Equations -- - 10.4 - Systems with Several Degrees of Freedom -- - 10.5 - Weyl-Ordered Polynomials and Bender[-]Dunne Algebra -- - 10.6 - Integration of the Operator Differential Equations -- - 10.7 - Iterative Solution for Polynomial Potentials -- - 10.8 - Another Numerical Method for the Integration of the Equations of Motion -- - 10.9 - Motion of a Wave Packet -- - 11.1 - Perturbation Theory Applied to the Problem of a Quartic Oscillator -- - 11.2 - Degenerate Perturbation Theory --
3.11 - Summation Over Normal Modes -- - 4.1 - The Uncertainty Principle -- - 4.2 - Application of the Uncertainty Principle for Calculating Bound State Energies -- - 4.3 - Time-Energy Uncertainty Relation -- - 4.4 - Uncertainty Relations for Angular Momentum-Angle Variables -- - 4.5 - Local Heisenberg Inequalities -- - 4.6 - The Correspondence Principle -- - 4.7 - Determination of the State of a System -- - 5.1 - Schwinger's Action Principle and Heisenberg's equations of Motion -- - 5.2 - Nonuniqueness of the Commutation Relations -- - 5.3 - First Integrals of Motion -- - 6.1 - Galilean Invariance -- - 6.2 - Wave Equation and the Galilean Transformation -- - 6.3 - Decay Problem in Nonrelativistic Quantum Mechanics and Mass Superselection Rule -- - 6.4 - Time-Reversal Invariance -- - 6.5 - Parity of a State -- - 6.6 - Permutation Symmetry -- - 6.7 - Lattice Translation -- - 6.8 - Classical and Quantum Integrability -- - 6.9 - Classical and Quantum Mechanical Degeneracies -- - 7.1 - Klein's Method -- - 7.2 - The Anharmonic Oscillator -- - 7.3 - The Double-Well Potential --
7.4 - Chasman's Method -- - 7.5 - Heisenberg's Equations of Motion for Impulsive Forces -- - 7.6 - Motion of a Wave Packet -- - 7.7 - Heisenberg's and Newton's Equations of Motion -- - 8.1 - Energy Spectrum of the Two-Dimensional Harmonic Oscillator -- - 8.2 - Exactly Solvable Potentials Obtained from Heisenberg's Equation -- - 8.3 - Creation and Annihilation Operators -- - 8.4 - Determination of the Eigenvalues by Factorization Method -- - 8.5 - A General Method for Factorization -- - 8.6 - Supersymmetry and Superpotential -- - 8.7 - Shape Invariant Potentials -- - 8.8 - Solvable Examples of Periodic Potentials -- - 9.1 - The Angular Momentum Operator -- - 9.2 - Determination of the Angular Momentum Eigenvalues -- - 9.3 - Matrix Elements of Scalars and Vectors and the Selection Rules -- - 9.4 - Spin Angular Momentum -- - 9.5 - Angular Momentum Eigenvalues Determined from the Eigenvalues of Two Uncoupled Oscillators -- - 9.6 - Rotations in Coordinate Space and in Spin Space -- - 9.7 - Motion of a Particle Inside a Sphere --
11.3 - Almost Degenerate Perturbation Theory -- - 11.4 - van der Waals Interaction -- - 11.5 - Time-Dependent Perturbation Theory -- - 11.6 - The Adiabatic Approximation -- - 11.7 - Transition Probability to the First Order -- - 12.1 - WKB Approximation for Bound States -- - 12.2 - Approximate Determination of the Eigenvalues for Nonpolynomial Potentials -- - 12.3 - Generalization of the Semiclassical Approximation to Systems with N Degrees of Freedom -- - 12.4 - A Variational Method Based on Heisenberg's Equation of Motion -- - 12.5 - Raleigh[-]Ritz Variational Principle -- - 12.6 - Tight-Binding Approximation -- - 12.7 - Heisenberg's Correspondence Principle -- - 12.8 - Bohr and Heisenberg Correspondence and the Frequencies and Intensities of the Emitted Radiation -- - 13.1 - Equations of Motion of Finite Order -- - 13.2 - Equation of Motion of Infinite Order -- - 13.3 - Classical Expression for the Energy -- - 13.4 - Energy Eigenvalues when the Equation of Motion is of Infinite Order -- - 14.1 - Determinantal Method in Potential Scattering --
16.1 - The Aharonov-Bohm Effect -- - 16.2 - Time-Dependent Interaction -- - 16.3 - Harmonic Oscillator with Time-Dependent Frequency -- - 16.4 - Heisenberg's Equations for Harmonic Oscillator with Time-Dependent Frequency -- - 16.5 - Neutron Interferometry -- - 16.6 - Gravity-Induced Quantum Interference -- - 16.7 - Quantum Beats in Waveguides with Time-Dependent Boundaries -- - 16.8 - Spin Magnetic Moment -- - 16.9 - Stern-Gerlach Experiment -- - 16.10 - Precession of Spin Magnetic Moment in a Constant Magnetic Field -- - 16.11 - Spin Resonance -- - 16.12 - A Simple Model of Atomic Clock -- - 16.13 - Berry's Phase -- - 17.1 - Ground State of Two-Electron Atom -- - 17.2 - Hartree and Hartree-Fock Approximations -- - 17.3 - Second Quantization -- - 17.4 - Second-Quantized Formulation of the Many-Boson Problem -- - 17.5 - Many-Fermion Problem -- - 17.6 - Pair Correlations Between Fermions -- - 17.7 - Uncertainty Relations for a Many-Fermion System -- - 17.8 - Pair Correlation Function for Noninteracting Bosons -- - 17.9 - Bogoliubov Transformation for a Many-Boson System --
17.10 - Scattering of Two Quasi-Particles -- - 17.11 - Bogoliubov Transformation for Fermions Interacting through Pairing Forces -- - 17.12 - Damped Harmonic Oscillator -- - 18.1 - Coherent State of the Radiation Field -- - 18.2 - Casimir Force -- - 18.3 - Casimir Force Between Parallel Conductors -- - 18.4 - Casimir Force in a Cavity with Conducting Walls -- - 19.1 - Theory of Natural Line Width -- - 19.2 - The Lamb Shift -- - 19.3 - Heisenberg's Equations for Interaction of an Atom with Radiation -- - 20.1 - EPR Experiment with Particles -- - 20.2 - Classical and Quantum Mechanical Operational Concepts of Measurement -- - 20.3 - Collapse of the Wave Function -- - 20.4 - Quantum versus Classical Correlations
This book provides a detailed account of quantum theory with a much greater emphasis on the Heisenberg equations of motion and the matrix method. --
The book features a deeper treatment of the fundamental concepts such as the rules of constructing quantum mechanical operators and the classical-quantal correspondence; the exact and approximate methods based on the Heisenberg equations; the determinantal approach to the scattering theory and the LSZ reduction formalism where the latter method is used to obtain the transition matrix. The uncertainty relations for a number of different observables are derived and discussed. A comprehensive chapter on the quantization of systems with nonlocalized interaction is included. Exact solvable models, and approximate techniques for solution of realistic many-body problems are also considered. The book takes a unified look in the final chapter, examining the question of measurement in quantum theory, with an introduction to the Bell's inequalities. --Book Jacket
Beschreibung:1 Online-Ressource (xix, 657 p.)
ISBN:9789814304108
9789814304115
9789814304122
9814304107
9814304115
9814304123

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen