Heisenberg's quantum mechanics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
c2011
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index Machine generated contents note - 1.1 - The Lagrangian and the Hamilton Principle -- - 1.2 - Noether's Theorem -- - 1.3 - The Hamiltonian Formulation -- - 1.4 - Canonical Transformation -- - 1.5 - Action-Angle Variables -- - 1.6 - Poisson Brackets -- - 1.7 - Time Development of Dynamical Variables and Poisson Brackets -- - 1.8 - Infinitesimal Canonical Transformation -- - 1.9 - Action Principle with Variable End Points -- - 1.10 - Symmetry and Degeneracy in Classical Dynamics -- - 1.11 - Closed Orbits and Accidental Degeneracy -- - 1.12 - Time-Dependent Exact Invariants -- - 2.1 - Equivalence of Wave and Matrix Mechanics -- - 3.1 - Vectors and Vector Spaces -- - 3.2 - Special Types of Operators -- - 3.3 - Vector Calculus for the Operators -- - 3.4 - Construction of Hermitian and Self-Adjoint Operators -- - 3.5 - Symmetrization Rule -- - 3.6 - Weyl's Rule -- - 3.7 - Dirac's Rule -- - 3.8 - Von Neumann's Rules -- - 3.9 - Self-Adjoint Operators -- - 3.10 - Momentum Operator in a Curvilinear Coordinates -- 14.2 - Two Solvable Problems -- - 14.3 - Time-Dependent Scattering Theory -- - 14.4 - The Scattering Matrix -- - 14.5 - The Lippmann[-]Schwinger Equation -- - 14.6 - Analytical Properties of the Radial Wave Function -- - 14.7 - The Jost Function -- - 14.8 - Zeros of the Jost Function and Bound Sates -- - 14.9 - Dispersion Relation -- - 14.10 - Central Local Potentials having Identical Phase Shifts and Bound States -- - 14.11 - The Levinson Theorem -- - 14.12 - Number of Bound States for a Given Partial Wave -- - 14.13 - Analyticity of the S-Matrix and the Principle of Casuality -- - 14.14 - Resonance Scattering -- - 14.15 - The Born Series -- - 14.16 - Impact Parameter Representation of the Scattering Amplitude -- - 14.17 - Determination of the Impact Parameter Phase Shift from the Differential Cross Section -- - 14.18 - Elastic Scattering of Identical Particles -- - 14.19 - Transition Probability -- - 14.20 - Transition Probabilities for Forced Harmonic Oscillator -- - 15.1 - Diffraction in Time -- - 15.2 - High Energy Scattering from an Absorptive Target -- 9.8 - The Hydrogen Atom -- - 9.9 - Calculation of the Energy Eigenvalues Using the Runge[-]Lenz Vector -- - 9.10 - Classical Limit of Hydrogen Atom -- - 9.11 - Self-Adjoint Ladder Operator -- - 9.12 - Self-Adjoint Ladder Operator tiff Angular Momentum -- - 9.13 - Generalized Spin Operators -- - 9.14 - The Ladder Operator -- - 10.1 - Discrete-Time Formulation of the Heisenberg's Equations of Motion -- - 10.2 - Quantum Tunneling Using Discrete-Time Formulation -- - 10.3 - Determination of Eigenvalues from Finite-Difference Equations -- - 10.4 - Systems with Several Degrees of Freedom -- - 10.5 - Weyl-Ordered Polynomials and Bender[-]Dunne Algebra -- - 10.6 - Integration of the Operator Differential Equations -- - 10.7 - Iterative Solution for Polynomial Potentials -- - 10.8 - Another Numerical Method for the Integration of the Equations of Motion -- - 10.9 - Motion of a Wave Packet -- - 11.1 - Perturbation Theory Applied to the Problem of a Quartic Oscillator -- - 11.2 - Degenerate Perturbation Theory -- 3.11 - Summation Over Normal Modes -- - 4.1 - The Uncertainty Principle -- - 4.2 - Application of the Uncertainty Principle for Calculating Bound State Energies -- - 4.3 - Time-Energy Uncertainty Relation -- - 4.4 - Uncertainty Relations for Angular Momentum-Angle Variables -- - 4.5 - Local Heisenberg Inequalities -- - 4.6 - The Correspondence Principle -- - 4.7 - Determination of the State of a System -- - 5.1 - Schwinger's Action Principle and Heisenberg's equations of Motion -- - 5.2 - Nonuniqueness of the Commutation Relations -- - 5.3 - First Integrals of Motion -- - 6.1 - Galilean Invariance -- - 6.2 - Wave Equation and the Galilean Transformation -- - 6.3 - Decay Problem in Nonrelativistic Quantum Mechanics and Mass Superselection Rule -- - 6.4 - Time-Reversal Invariance -- - 6.5 - Parity of a State -- - 6.6 - Permutation Symmetry -- - 6.7 - Lattice Translation -- - 6.8 - Classical and Quantum Integrability -- - 6.9 - Classical and Quantum Mechanical Degeneracies -- - 7.1 - Klein's Method -- - 7.2 - The Anharmonic Oscillator -- - 7.3 - The Double-Well Potential -- 7.4 - Chasman's Method -- - 7.5 - Heisenberg's Equations of Motion for Impulsive Forces -- - 7.6 - Motion of a Wave Packet -- - 7.7 - Heisenberg's and Newton's Equations of Motion -- - 8.1 - Energy Spectrum of the Two-Dimensional Harmonic Oscillator -- - 8.2 - Exactly Solvable Potentials Obtained from Heisenberg's Equation -- - 8.3 - Creation and Annihilation Operators -- - 8.4 - Determination of the Eigenvalues by Factorization Method -- - 8.5 - A General Method for Factorization -- - 8.6 - Supersymmetry and Superpotential -- - 8.7 - Shape Invariant Potentials -- - 8.8 - Solvable Examples of Periodic Potentials -- - 9.1 - The Angular Momentum Operator -- - 9.2 - Determination of the Angular Momentum Eigenvalues -- - 9.3 - Matrix Elements of Scalars and Vectors and the Selection Rules -- - 9.4 - Spin Angular Momentum -- - 9.5 - Angular Momentum Eigenvalues Determined from the Eigenvalues of Two Uncoupled Oscillators -- - 9.6 - Rotations in Coordinate Space and in Spin Space -- - 9.7 - Motion of a Particle Inside a Sphere -- 11.3 - Almost Degenerate Perturbation Theory -- - 11.4 - van der Waals Interaction -- - 11.5 - Time-Dependent Perturbation Theory -- - 11.6 - The Adiabatic Approximation -- - 11.7 - Transition Probability to the First Order -- - 12.1 - WKB Approximation for Bound States -- - 12.2 - Approximate Determination of the Eigenvalues for Nonpolynomial Potentials -- - 12.3 - Generalization of the Semiclassical Approximation to Systems with N Degrees of Freedom -- - 12.4 - A Variational Method Based on Heisenberg's Equation of Motion -- - 12.5 - Raleigh[-]Ritz Variational Principle -- - 12.6 - Tight-Binding Approximation -- - 12.7 - Heisenberg's Correspondence Principle -- - 12.8 - Bohr and Heisenberg Correspondence and the Frequencies and Intensities of the Emitted Radiation -- - 13.1 - Equations of Motion of Finite Order -- - 13.2 - Equation of Motion of Infinite Order -- - 13.3 - Classical Expression for the Energy -- - 13.4 - Energy Eigenvalues when the Equation of Motion is of Infinite Order -- - 14.1 - Determinantal Method in Potential Scattering -- 16.1 - The Aharonov-Bohm Effect -- - 16.2 - Time-Dependent Interaction -- - 16.3 - Harmonic Oscillator with Time-Dependent Frequency -- - 16.4 - Heisenberg's Equations for Harmonic Oscillator with Time-Dependent Frequency -- - 16.5 - Neutron Interferometry -- - 16.6 - Gravity-Induced Quantum Interference -- - 16.7 - Quantum Beats in Waveguides with Time-Dependent Boundaries -- - 16.8 - Spin Magnetic Moment -- - 16.9 - Stern-Gerlach Experiment -- - 16.10 - Precession of Spin Magnetic Moment in a Constant Magnetic Field -- - 16.11 - Spin Resonance -- - 16.12 - A Simple Model of Atomic Clock -- - 16.13 - Berry's Phase -- - 17.1 - Ground State of Two-Electron Atom -- - 17.2 - Hartree and Hartree-Fock Approximations -- - 17.3 - Second Quantization -- - 17.4 - Second-Quantized Formulation of the Many-Boson Problem -- - 17.5 - Many-Fermion Problem -- - 17.6 - Pair Correlations Between Fermions -- - 17.7 - Uncertainty Relations for a Many-Fermion System -- - 17.8 - Pair Correlation Function for Noninteracting Bosons -- - 17.9 - Bogoliubov Transformation for a Many-Boson System -- 17.10 - Scattering of Two Quasi-Particles -- - 17.11 - Bogoliubov Transformation for Fermions Interacting through Pairing Forces -- - 17.12 - Damped Harmonic Oscillator -- - 18.1 - Coherent State of the Radiation Field -- - 18.2 - Casimir Force -- - 18.3 - Casimir Force Between Parallel Conductors -- - 18.4 - Casimir Force in a Cavity with Conducting Walls -- - 19.1 - Theory of Natural Line Width -- - 19.2 - The Lamb Shift -- - 19.3 - Heisenberg's Equations for Interaction of an Atom with Radiation -- - 20.1 - EPR Experiment with Particles -- - 20.2 - Classical and Quantum Mechanical Operational Concepts of Measurement -- - 20.3 - Collapse of the Wave Function -- - 20.4 - Quantum versus Classical Correlations This book provides a detailed account of quantum theory with a much greater emphasis on the Heisenberg equations of motion and the matrix method. -- The book features a deeper treatment of the fundamental concepts such as the rules of constructing quantum mechanical operators and the classical-quantal correspondence; the exact and approximate methods based on the Heisenberg equations; the determinantal approach to the scattering theory and the LSZ reduction formalism where the latter method is used to obtain the transition matrix. The uncertainty relations for a number of different observables are derived and discussed. A comprehensive chapter on the quantization of systems with nonlocalized interaction is included. Exact solvable models, and approximate techniques for solution of realistic many-body problems are also considered. The book takes a unified look in the final chapter, examining the question of measurement in quantum theory, with an introduction to the Bell's inequalities. --Book Jacket |
Beschreibung: | 1 Online-Ressource (xix, 657 p.) |
ISBN: | 9789814304108 9789814304115 9789814304122 9814304107 9814304115 9814304123 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043124794 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2011 |||| o||u| ||||||eng d | ||
020 | |a 9789814304108 |9 978-981-4304-10-8 | ||
020 | |a 9789814304115 |9 978-981-4304-11-5 | ||
020 | |a 9789814304122 |c electronic bk. |9 978-981-4304-12-2 | ||
020 | |a 9814304107 |9 981-4304-10-7 | ||
020 | |a 9814304115 |9 981-4304-11-5 | ||
020 | |a 9814304123 |c electronic bk. |9 981-4304-12-3 | ||
035 | |a (OCoLC)742633342 | ||
035 | |a (DE-599)BVBBV043124794 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.12 |2 23 | |
100 | 1 | |a Razavy, Mohsen |e Verfasser |4 aut | |
245 | 1 | 0 | |a Heisenberg's quantum mechanics |c Mohsen Razavy |
264 | 1 | |a Singapore |b World Scientific |c c2011 | |
300 | |a 1 Online-Ressource (xix, 657 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Machine generated contents note - 1.1 - The Lagrangian and the Hamilton Principle -- - 1.2 - Noether's Theorem -- - 1.3 - The Hamiltonian Formulation -- - 1.4 - Canonical Transformation -- - 1.5 - Action-Angle Variables -- - 1.6 - Poisson Brackets -- - 1.7 - Time Development of Dynamical Variables and Poisson Brackets -- - 1.8 - Infinitesimal Canonical Transformation -- - 1.9 - Action Principle with Variable End Points -- - 1.10 - Symmetry and Degeneracy in Classical Dynamics -- - 1.11 - Closed Orbits and Accidental Degeneracy -- - 1.12 - Time-Dependent Exact Invariants -- - 2.1 - Equivalence of Wave and Matrix Mechanics -- - 3.1 - Vectors and Vector Spaces -- - 3.2 - Special Types of Operators -- - 3.3 - Vector Calculus for the Operators -- - 3.4 - Construction of Hermitian and Self-Adjoint Operators -- - 3.5 - Symmetrization Rule -- - 3.6 - Weyl's Rule -- - 3.7 - Dirac's Rule -- - 3.8 - Von Neumann's Rules -- - 3.9 - Self-Adjoint Operators -- - 3.10 - Momentum Operator in a Curvilinear Coordinates -- | ||
500 | |a 14.2 - Two Solvable Problems -- - 14.3 - Time-Dependent Scattering Theory -- - 14.4 - The Scattering Matrix -- - 14.5 - The Lippmann[-]Schwinger Equation -- - 14.6 - Analytical Properties of the Radial Wave Function -- - 14.7 - The Jost Function -- - 14.8 - Zeros of the Jost Function and Bound Sates -- - 14.9 - Dispersion Relation -- - 14.10 - Central Local Potentials having Identical Phase Shifts and Bound States -- - 14.11 - The Levinson Theorem -- - 14.12 - Number of Bound States for a Given Partial Wave -- - 14.13 - Analyticity of the S-Matrix and the Principle of Casuality -- - 14.14 - Resonance Scattering -- - 14.15 - The Born Series -- - 14.16 - Impact Parameter Representation of the Scattering Amplitude -- - 14.17 - Determination of the Impact Parameter Phase Shift from the Differential Cross Section -- - 14.18 - Elastic Scattering of Identical Particles -- - 14.19 - Transition Probability -- - 14.20 - Transition Probabilities for Forced Harmonic Oscillator -- - 15.1 - Diffraction in Time -- - 15.2 - High Energy Scattering from an Absorptive Target -- | ||
500 | |a 9.8 - The Hydrogen Atom -- - 9.9 - Calculation of the Energy Eigenvalues Using the Runge[-]Lenz Vector -- - 9.10 - Classical Limit of Hydrogen Atom -- - 9.11 - Self-Adjoint Ladder Operator -- - 9.12 - Self-Adjoint Ladder Operator tiff Angular Momentum -- - 9.13 - Generalized Spin Operators -- - 9.14 - The Ladder Operator -- - 10.1 - Discrete-Time Formulation of the Heisenberg's Equations of Motion -- - 10.2 - Quantum Tunneling Using Discrete-Time Formulation -- - 10.3 - Determination of Eigenvalues from Finite-Difference Equations -- - 10.4 - Systems with Several Degrees of Freedom -- - 10.5 - Weyl-Ordered Polynomials and Bender[-]Dunne Algebra -- - 10.6 - Integration of the Operator Differential Equations -- - 10.7 - Iterative Solution for Polynomial Potentials -- - 10.8 - Another Numerical Method for the Integration of the Equations of Motion -- - 10.9 - Motion of a Wave Packet -- - 11.1 - Perturbation Theory Applied to the Problem of a Quartic Oscillator -- - 11.2 - Degenerate Perturbation Theory -- | ||
500 | |a 3.11 - Summation Over Normal Modes -- - 4.1 - The Uncertainty Principle -- - 4.2 - Application of the Uncertainty Principle for Calculating Bound State Energies -- - 4.3 - Time-Energy Uncertainty Relation -- - 4.4 - Uncertainty Relations for Angular Momentum-Angle Variables -- - 4.5 - Local Heisenberg Inequalities -- - 4.6 - The Correspondence Principle -- - 4.7 - Determination of the State of a System -- - 5.1 - Schwinger's Action Principle and Heisenberg's equations of Motion -- - 5.2 - Nonuniqueness of the Commutation Relations -- - 5.3 - First Integrals of Motion -- - 6.1 - Galilean Invariance -- - 6.2 - Wave Equation and the Galilean Transformation -- - 6.3 - Decay Problem in Nonrelativistic Quantum Mechanics and Mass Superselection Rule -- - 6.4 - Time-Reversal Invariance -- - 6.5 - Parity of a State -- - 6.6 - Permutation Symmetry -- - 6.7 - Lattice Translation -- - 6.8 - Classical and Quantum Integrability -- - 6.9 - Classical and Quantum Mechanical Degeneracies -- - 7.1 - Klein's Method -- - 7.2 - The Anharmonic Oscillator -- - 7.3 - The Double-Well Potential -- | ||
500 | |a 7.4 - Chasman's Method -- - 7.5 - Heisenberg's Equations of Motion for Impulsive Forces -- - 7.6 - Motion of a Wave Packet -- - 7.7 - Heisenberg's and Newton's Equations of Motion -- - 8.1 - Energy Spectrum of the Two-Dimensional Harmonic Oscillator -- - 8.2 - Exactly Solvable Potentials Obtained from Heisenberg's Equation -- - 8.3 - Creation and Annihilation Operators -- - 8.4 - Determination of the Eigenvalues by Factorization Method -- - 8.5 - A General Method for Factorization -- - 8.6 - Supersymmetry and Superpotential -- - 8.7 - Shape Invariant Potentials -- - 8.8 - Solvable Examples of Periodic Potentials -- - 9.1 - The Angular Momentum Operator -- - 9.2 - Determination of the Angular Momentum Eigenvalues -- - 9.3 - Matrix Elements of Scalars and Vectors and the Selection Rules -- - 9.4 - Spin Angular Momentum -- - 9.5 - Angular Momentum Eigenvalues Determined from the Eigenvalues of Two Uncoupled Oscillators -- - 9.6 - Rotations in Coordinate Space and in Spin Space -- - 9.7 - Motion of a Particle Inside a Sphere -- | ||
500 | |a 11.3 - Almost Degenerate Perturbation Theory -- - 11.4 - van der Waals Interaction -- - 11.5 - Time-Dependent Perturbation Theory -- - 11.6 - The Adiabatic Approximation -- - 11.7 - Transition Probability to the First Order -- - 12.1 - WKB Approximation for Bound States -- - 12.2 - Approximate Determination of the Eigenvalues for Nonpolynomial Potentials -- - 12.3 - Generalization of the Semiclassical Approximation to Systems with N Degrees of Freedom -- - 12.4 - A Variational Method Based on Heisenberg's Equation of Motion -- - 12.5 - Raleigh[-]Ritz Variational Principle -- - 12.6 - Tight-Binding Approximation -- - 12.7 - Heisenberg's Correspondence Principle -- - 12.8 - Bohr and Heisenberg Correspondence and the Frequencies and Intensities of the Emitted Radiation -- - 13.1 - Equations of Motion of Finite Order -- - 13.2 - Equation of Motion of Infinite Order -- - 13.3 - Classical Expression for the Energy -- - 13.4 - Energy Eigenvalues when the Equation of Motion is of Infinite Order -- - 14.1 - Determinantal Method in Potential Scattering -- | ||
500 | |a 16.1 - The Aharonov-Bohm Effect -- - 16.2 - Time-Dependent Interaction -- - 16.3 - Harmonic Oscillator with Time-Dependent Frequency -- - 16.4 - Heisenberg's Equations for Harmonic Oscillator with Time-Dependent Frequency -- - 16.5 - Neutron Interferometry -- - 16.6 - Gravity-Induced Quantum Interference -- - 16.7 - Quantum Beats in Waveguides with Time-Dependent Boundaries -- - 16.8 - Spin Magnetic Moment -- - 16.9 - Stern-Gerlach Experiment -- - 16.10 - Precession of Spin Magnetic Moment in a Constant Magnetic Field -- - 16.11 - Spin Resonance -- - 16.12 - A Simple Model of Atomic Clock -- - 16.13 - Berry's Phase -- - 17.1 - Ground State of Two-Electron Atom -- - 17.2 - Hartree and Hartree-Fock Approximations -- - 17.3 - Second Quantization -- - 17.4 - Second-Quantized Formulation of the Many-Boson Problem -- - 17.5 - Many-Fermion Problem -- - 17.6 - Pair Correlations Between Fermions -- - 17.7 - Uncertainty Relations for a Many-Fermion System -- - 17.8 - Pair Correlation Function for Noninteracting Bosons -- - 17.9 - Bogoliubov Transformation for a Many-Boson System -- | ||
500 | |a 17.10 - Scattering of Two Quasi-Particles -- - 17.11 - Bogoliubov Transformation for Fermions Interacting through Pairing Forces -- - 17.12 - Damped Harmonic Oscillator -- - 18.1 - Coherent State of the Radiation Field -- - 18.2 - Casimir Force -- - 18.3 - Casimir Force Between Parallel Conductors -- - 18.4 - Casimir Force in a Cavity with Conducting Walls -- - 19.1 - Theory of Natural Line Width -- - 19.2 - The Lamb Shift -- - 19.3 - Heisenberg's Equations for Interaction of an Atom with Radiation -- - 20.1 - EPR Experiment with Particles -- - 20.2 - Classical and Quantum Mechanical Operational Concepts of Measurement -- - 20.3 - Collapse of the Wave Function -- - 20.4 - Quantum versus Classical Correlations | ||
500 | |a This book provides a detailed account of quantum theory with a much greater emphasis on the Heisenberg equations of motion and the matrix method. -- | ||
500 | |a The book features a deeper treatment of the fundamental concepts such as the rules of constructing quantum mechanical operators and the classical-quantal correspondence; the exact and approximate methods based on the Heisenberg equations; the determinantal approach to the scattering theory and the LSZ reduction formalism where the latter method is used to obtain the transition matrix. The uncertainty relations for a number of different observables are derived and discussed. A comprehensive chapter on the quantization of systems with nonlocalized interaction is included. Exact solvable models, and approximate techniques for solution of realistic many-body problems are also considered. The book takes a unified look in the final chapter, examining the question of measurement in quantum theory, with an introduction to the Bell's inequalities. --Book Jacket | ||
650 | 7 | |a SCIENCE / Physics / Quantum Theory |2 bisacsh | |
650 | 7 | |a Quantum theory |2 fast | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Quantum theory | |
650 | 0 | 7 | |a Matrizenmechanik |0 (DE-588)4169128-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Matrizenmechanik |0 (DE-588)4169128-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373246 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028548984 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373246 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373246 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175557785550848 |
---|---|
any_adam_object | |
author | Razavy, Mohsen |
author_facet | Razavy, Mohsen |
author_role | aut |
author_sort | Razavy, Mohsen |
author_variant | m r mr |
building | Verbundindex |
bvnumber | BV043124794 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)742633342 (DE-599)BVBBV043124794 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11235nmm a2200601zc 4500</leader><controlfield tag="001">BV043124794</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814304108</subfield><subfield code="9">978-981-4304-10-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814304115</subfield><subfield code="9">978-981-4304-11-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814304122</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4304-12-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814304107</subfield><subfield code="9">981-4304-10-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814304115</subfield><subfield code="9">981-4304-11-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814304123</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4304-12-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)742633342</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043124794</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Razavy, Mohsen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heisenberg's quantum mechanics</subfield><subfield code="c">Mohsen Razavy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 657 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Machine generated contents note - 1.1 - The Lagrangian and the Hamilton Principle -- - 1.2 - Noether's Theorem -- - 1.3 - The Hamiltonian Formulation -- - 1.4 - Canonical Transformation -- - 1.5 - Action-Angle Variables -- - 1.6 - Poisson Brackets -- - 1.7 - Time Development of Dynamical Variables and Poisson Brackets -- - 1.8 - Infinitesimal Canonical Transformation -- - 1.9 - Action Principle with Variable End Points -- - 1.10 - Symmetry and Degeneracy in Classical Dynamics -- - 1.11 - Closed Orbits and Accidental Degeneracy -- - 1.12 - Time-Dependent Exact Invariants -- - 2.1 - Equivalence of Wave and Matrix Mechanics -- - 3.1 - Vectors and Vector Spaces -- - 3.2 - Special Types of Operators -- - 3.3 - Vector Calculus for the Operators -- - 3.4 - Construction of Hermitian and Self-Adjoint Operators -- - 3.5 - Symmetrization Rule -- - 3.6 - Weyl's Rule -- - 3.7 - Dirac's Rule -- - 3.8 - Von Neumann's Rules -- - 3.9 - Self-Adjoint Operators -- - 3.10 - Momentum Operator in a Curvilinear Coordinates --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">14.2 - Two Solvable Problems -- - 14.3 - Time-Dependent Scattering Theory -- - 14.4 - The Scattering Matrix -- - 14.5 - The Lippmann[-]Schwinger Equation -- - 14.6 - Analytical Properties of the Radial Wave Function -- - 14.7 - The Jost Function -- - 14.8 - Zeros of the Jost Function and Bound Sates -- - 14.9 - Dispersion Relation -- - 14.10 - Central Local Potentials having Identical Phase Shifts and Bound States -- - 14.11 - The Levinson Theorem -- - 14.12 - Number of Bound States for a Given Partial Wave -- - 14.13 - Analyticity of the S-Matrix and the Principle of Casuality -- - 14.14 - Resonance Scattering -- - 14.15 - The Born Series -- - 14.16 - Impact Parameter Representation of the Scattering Amplitude -- - 14.17 - Determination of the Impact Parameter Phase Shift from the Differential Cross Section -- - 14.18 - Elastic Scattering of Identical Particles -- - 14.19 - Transition Probability -- - 14.20 - Transition Probabilities for Forced Harmonic Oscillator -- - 15.1 - Diffraction in Time -- - 15.2 - High Energy Scattering from an Absorptive Target --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">9.8 - The Hydrogen Atom -- - 9.9 - Calculation of the Energy Eigenvalues Using the Runge[-]Lenz Vector -- - 9.10 - Classical Limit of Hydrogen Atom -- - 9.11 - Self-Adjoint Ladder Operator -- - 9.12 - Self-Adjoint Ladder Operator tiff Angular Momentum -- - 9.13 - Generalized Spin Operators -- - 9.14 - The Ladder Operator -- - 10.1 - Discrete-Time Formulation of the Heisenberg's Equations of Motion -- - 10.2 - Quantum Tunneling Using Discrete-Time Formulation -- - 10.3 - Determination of Eigenvalues from Finite-Difference Equations -- - 10.4 - Systems with Several Degrees of Freedom -- - 10.5 - Weyl-Ordered Polynomials and Bender[-]Dunne Algebra -- - 10.6 - Integration of the Operator Differential Equations -- - 10.7 - Iterative Solution for Polynomial Potentials -- - 10.8 - Another Numerical Method for the Integration of the Equations of Motion -- - 10.9 - Motion of a Wave Packet -- - 11.1 - Perturbation Theory Applied to the Problem of a Quartic Oscillator -- - 11.2 - Degenerate Perturbation Theory --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.11 - Summation Over Normal Modes -- - 4.1 - The Uncertainty Principle -- - 4.2 - Application of the Uncertainty Principle for Calculating Bound State Energies -- - 4.3 - Time-Energy Uncertainty Relation -- - 4.4 - Uncertainty Relations for Angular Momentum-Angle Variables -- - 4.5 - Local Heisenberg Inequalities -- - 4.6 - The Correspondence Principle -- - 4.7 - Determination of the State of a System -- - 5.1 - Schwinger's Action Principle and Heisenberg's equations of Motion -- - 5.2 - Nonuniqueness of the Commutation Relations -- - 5.3 - First Integrals of Motion -- - 6.1 - Galilean Invariance -- - 6.2 - Wave Equation and the Galilean Transformation -- - 6.3 - Decay Problem in Nonrelativistic Quantum Mechanics and Mass Superselection Rule -- - 6.4 - Time-Reversal Invariance -- - 6.5 - Parity of a State -- - 6.6 - Permutation Symmetry -- - 6.7 - Lattice Translation -- - 6.8 - Classical and Quantum Integrability -- - 6.9 - Classical and Quantum Mechanical Degeneracies -- - 7.1 - Klein's Method -- - 7.2 - The Anharmonic Oscillator -- - 7.3 - The Double-Well Potential --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">7.4 - Chasman's Method -- - 7.5 - Heisenberg's Equations of Motion for Impulsive Forces -- - 7.6 - Motion of a Wave Packet -- - 7.7 - Heisenberg's and Newton's Equations of Motion -- - 8.1 - Energy Spectrum of the Two-Dimensional Harmonic Oscillator -- - 8.2 - Exactly Solvable Potentials Obtained from Heisenberg's Equation -- - 8.3 - Creation and Annihilation Operators -- - 8.4 - Determination of the Eigenvalues by Factorization Method -- - 8.5 - A General Method for Factorization -- - 8.6 - Supersymmetry and Superpotential -- - 8.7 - Shape Invariant Potentials -- - 8.8 - Solvable Examples of Periodic Potentials -- - 9.1 - The Angular Momentum Operator -- - 9.2 - Determination of the Angular Momentum Eigenvalues -- - 9.3 - Matrix Elements of Scalars and Vectors and the Selection Rules -- - 9.4 - Spin Angular Momentum -- - 9.5 - Angular Momentum Eigenvalues Determined from the Eigenvalues of Two Uncoupled Oscillators -- - 9.6 - Rotations in Coordinate Space and in Spin Space -- - 9.7 - Motion of a Particle Inside a Sphere --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">11.3 - Almost Degenerate Perturbation Theory -- - 11.4 - van der Waals Interaction -- - 11.5 - Time-Dependent Perturbation Theory -- - 11.6 - The Adiabatic Approximation -- - 11.7 - Transition Probability to the First Order -- - 12.1 - WKB Approximation for Bound States -- - 12.2 - Approximate Determination of the Eigenvalues for Nonpolynomial Potentials -- - 12.3 - Generalization of the Semiclassical Approximation to Systems with N Degrees of Freedom -- - 12.4 - A Variational Method Based on Heisenberg's Equation of Motion -- - 12.5 - Raleigh[-]Ritz Variational Principle -- - 12.6 - Tight-Binding Approximation -- - 12.7 - Heisenberg's Correspondence Principle -- - 12.8 - Bohr and Heisenberg Correspondence and the Frequencies and Intensities of the Emitted Radiation -- - 13.1 - Equations of Motion of Finite Order -- - 13.2 - Equation of Motion of Infinite Order -- - 13.3 - Classical Expression for the Energy -- - 13.4 - Energy Eigenvalues when the Equation of Motion is of Infinite Order -- - 14.1 - Determinantal Method in Potential Scattering --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">16.1 - The Aharonov-Bohm Effect -- - 16.2 - Time-Dependent Interaction -- - 16.3 - Harmonic Oscillator with Time-Dependent Frequency -- - 16.4 - Heisenberg's Equations for Harmonic Oscillator with Time-Dependent Frequency -- - 16.5 - Neutron Interferometry -- - 16.6 - Gravity-Induced Quantum Interference -- - 16.7 - Quantum Beats in Waveguides with Time-Dependent Boundaries -- - 16.8 - Spin Magnetic Moment -- - 16.9 - Stern-Gerlach Experiment -- - 16.10 - Precession of Spin Magnetic Moment in a Constant Magnetic Field -- - 16.11 - Spin Resonance -- - 16.12 - A Simple Model of Atomic Clock -- - 16.13 - Berry's Phase -- - 17.1 - Ground State of Two-Electron Atom -- - 17.2 - Hartree and Hartree-Fock Approximations -- - 17.3 - Second Quantization -- - 17.4 - Second-Quantized Formulation of the Many-Boson Problem -- - 17.5 - Many-Fermion Problem -- - 17.6 - Pair Correlations Between Fermions -- - 17.7 - Uncertainty Relations for a Many-Fermion System -- - 17.8 - Pair Correlation Function for Noninteracting Bosons -- - 17.9 - Bogoliubov Transformation for a Many-Boson System --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">17.10 - Scattering of Two Quasi-Particles -- - 17.11 - Bogoliubov Transformation for Fermions Interacting through Pairing Forces -- - 17.12 - Damped Harmonic Oscillator -- - 18.1 - Coherent State of the Radiation Field -- - 18.2 - Casimir Force -- - 18.3 - Casimir Force Between Parallel Conductors -- - 18.4 - Casimir Force in a Cavity with Conducting Walls -- - 19.1 - Theory of Natural Line Width -- - 19.2 - The Lamb Shift -- - 19.3 - Heisenberg's Equations for Interaction of an Atom with Radiation -- - 20.1 - EPR Experiment with Particles -- - 20.2 - Classical and Quantum Mechanical Operational Concepts of Measurement -- - 20.3 - Collapse of the Wave Function -- - 20.4 - Quantum versus Classical Correlations</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book provides a detailed account of quantum theory with a much greater emphasis on the Heisenberg equations of motion and the matrix method. --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The book features a deeper treatment of the fundamental concepts such as the rules of constructing quantum mechanical operators and the classical-quantal correspondence; the exact and approximate methods based on the Heisenberg equations; the determinantal approach to the scattering theory and the LSZ reduction formalism where the latter method is used to obtain the transition matrix. The uncertainty relations for a number of different observables are derived and discussed. A comprehensive chapter on the quantization of systems with nonlocalized interaction is included. Exact solvable models, and approximate techniques for solution of realistic many-body problems are also considered. The book takes a unified look in the final chapter, examining the question of measurement in quantum theory, with an introduction to the Bell's inequalities. --Book Jacket</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / Quantum Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizenmechanik</subfield><subfield code="0">(DE-588)4169128-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matrizenmechanik</subfield><subfield code="0">(DE-588)4169128-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373246</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028548984</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373246</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373246</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043124794 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:11Z |
institution | BVB |
isbn | 9789814304108 9789814304115 9789814304122 9814304107 9814304115 9814304123 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028548984 |
oclc_num | 742633342 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xix, 657 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific |
record_format | marc |
spelling | Razavy, Mohsen Verfasser aut Heisenberg's quantum mechanics Mohsen Razavy Singapore World Scientific c2011 1 Online-Ressource (xix, 657 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index Machine generated contents note - 1.1 - The Lagrangian and the Hamilton Principle -- - 1.2 - Noether's Theorem -- - 1.3 - The Hamiltonian Formulation -- - 1.4 - Canonical Transformation -- - 1.5 - Action-Angle Variables -- - 1.6 - Poisson Brackets -- - 1.7 - Time Development of Dynamical Variables and Poisson Brackets -- - 1.8 - Infinitesimal Canonical Transformation -- - 1.9 - Action Principle with Variable End Points -- - 1.10 - Symmetry and Degeneracy in Classical Dynamics -- - 1.11 - Closed Orbits and Accidental Degeneracy -- - 1.12 - Time-Dependent Exact Invariants -- - 2.1 - Equivalence of Wave and Matrix Mechanics -- - 3.1 - Vectors and Vector Spaces -- - 3.2 - Special Types of Operators -- - 3.3 - Vector Calculus for the Operators -- - 3.4 - Construction of Hermitian and Self-Adjoint Operators -- - 3.5 - Symmetrization Rule -- - 3.6 - Weyl's Rule -- - 3.7 - Dirac's Rule -- - 3.8 - Von Neumann's Rules -- - 3.9 - Self-Adjoint Operators -- - 3.10 - Momentum Operator in a Curvilinear Coordinates -- 14.2 - Two Solvable Problems -- - 14.3 - Time-Dependent Scattering Theory -- - 14.4 - The Scattering Matrix -- - 14.5 - The Lippmann[-]Schwinger Equation -- - 14.6 - Analytical Properties of the Radial Wave Function -- - 14.7 - The Jost Function -- - 14.8 - Zeros of the Jost Function and Bound Sates -- - 14.9 - Dispersion Relation -- - 14.10 - Central Local Potentials having Identical Phase Shifts and Bound States -- - 14.11 - The Levinson Theorem -- - 14.12 - Number of Bound States for a Given Partial Wave -- - 14.13 - Analyticity of the S-Matrix and the Principle of Casuality -- - 14.14 - Resonance Scattering -- - 14.15 - The Born Series -- - 14.16 - Impact Parameter Representation of the Scattering Amplitude -- - 14.17 - Determination of the Impact Parameter Phase Shift from the Differential Cross Section -- - 14.18 - Elastic Scattering of Identical Particles -- - 14.19 - Transition Probability -- - 14.20 - Transition Probabilities for Forced Harmonic Oscillator -- - 15.1 - Diffraction in Time -- - 15.2 - High Energy Scattering from an Absorptive Target -- 9.8 - The Hydrogen Atom -- - 9.9 - Calculation of the Energy Eigenvalues Using the Runge[-]Lenz Vector -- - 9.10 - Classical Limit of Hydrogen Atom -- - 9.11 - Self-Adjoint Ladder Operator -- - 9.12 - Self-Adjoint Ladder Operator tiff Angular Momentum -- - 9.13 - Generalized Spin Operators -- - 9.14 - The Ladder Operator -- - 10.1 - Discrete-Time Formulation of the Heisenberg's Equations of Motion -- - 10.2 - Quantum Tunneling Using Discrete-Time Formulation -- - 10.3 - Determination of Eigenvalues from Finite-Difference Equations -- - 10.4 - Systems with Several Degrees of Freedom -- - 10.5 - Weyl-Ordered Polynomials and Bender[-]Dunne Algebra -- - 10.6 - Integration of the Operator Differential Equations -- - 10.7 - Iterative Solution for Polynomial Potentials -- - 10.8 - Another Numerical Method for the Integration of the Equations of Motion -- - 10.9 - Motion of a Wave Packet -- - 11.1 - Perturbation Theory Applied to the Problem of a Quartic Oscillator -- - 11.2 - Degenerate Perturbation Theory -- 3.11 - Summation Over Normal Modes -- - 4.1 - The Uncertainty Principle -- - 4.2 - Application of the Uncertainty Principle for Calculating Bound State Energies -- - 4.3 - Time-Energy Uncertainty Relation -- - 4.4 - Uncertainty Relations for Angular Momentum-Angle Variables -- - 4.5 - Local Heisenberg Inequalities -- - 4.6 - The Correspondence Principle -- - 4.7 - Determination of the State of a System -- - 5.1 - Schwinger's Action Principle and Heisenberg's equations of Motion -- - 5.2 - Nonuniqueness of the Commutation Relations -- - 5.3 - First Integrals of Motion -- - 6.1 - Galilean Invariance -- - 6.2 - Wave Equation and the Galilean Transformation -- - 6.3 - Decay Problem in Nonrelativistic Quantum Mechanics and Mass Superselection Rule -- - 6.4 - Time-Reversal Invariance -- - 6.5 - Parity of a State -- - 6.6 - Permutation Symmetry -- - 6.7 - Lattice Translation -- - 6.8 - Classical and Quantum Integrability -- - 6.9 - Classical and Quantum Mechanical Degeneracies -- - 7.1 - Klein's Method -- - 7.2 - The Anharmonic Oscillator -- - 7.3 - The Double-Well Potential -- 7.4 - Chasman's Method -- - 7.5 - Heisenberg's Equations of Motion for Impulsive Forces -- - 7.6 - Motion of a Wave Packet -- - 7.7 - Heisenberg's and Newton's Equations of Motion -- - 8.1 - Energy Spectrum of the Two-Dimensional Harmonic Oscillator -- - 8.2 - Exactly Solvable Potentials Obtained from Heisenberg's Equation -- - 8.3 - Creation and Annihilation Operators -- - 8.4 - Determination of the Eigenvalues by Factorization Method -- - 8.5 - A General Method for Factorization -- - 8.6 - Supersymmetry and Superpotential -- - 8.7 - Shape Invariant Potentials -- - 8.8 - Solvable Examples of Periodic Potentials -- - 9.1 - The Angular Momentum Operator -- - 9.2 - Determination of the Angular Momentum Eigenvalues -- - 9.3 - Matrix Elements of Scalars and Vectors and the Selection Rules -- - 9.4 - Spin Angular Momentum -- - 9.5 - Angular Momentum Eigenvalues Determined from the Eigenvalues of Two Uncoupled Oscillators -- - 9.6 - Rotations in Coordinate Space and in Spin Space -- - 9.7 - Motion of a Particle Inside a Sphere -- 11.3 - Almost Degenerate Perturbation Theory -- - 11.4 - van der Waals Interaction -- - 11.5 - Time-Dependent Perturbation Theory -- - 11.6 - The Adiabatic Approximation -- - 11.7 - Transition Probability to the First Order -- - 12.1 - WKB Approximation for Bound States -- - 12.2 - Approximate Determination of the Eigenvalues for Nonpolynomial Potentials -- - 12.3 - Generalization of the Semiclassical Approximation to Systems with N Degrees of Freedom -- - 12.4 - A Variational Method Based on Heisenberg's Equation of Motion -- - 12.5 - Raleigh[-]Ritz Variational Principle -- - 12.6 - Tight-Binding Approximation -- - 12.7 - Heisenberg's Correspondence Principle -- - 12.8 - Bohr and Heisenberg Correspondence and the Frequencies and Intensities of the Emitted Radiation -- - 13.1 - Equations of Motion of Finite Order -- - 13.2 - Equation of Motion of Infinite Order -- - 13.3 - Classical Expression for the Energy -- - 13.4 - Energy Eigenvalues when the Equation of Motion is of Infinite Order -- - 14.1 - Determinantal Method in Potential Scattering -- 16.1 - The Aharonov-Bohm Effect -- - 16.2 - Time-Dependent Interaction -- - 16.3 - Harmonic Oscillator with Time-Dependent Frequency -- - 16.4 - Heisenberg's Equations for Harmonic Oscillator with Time-Dependent Frequency -- - 16.5 - Neutron Interferometry -- - 16.6 - Gravity-Induced Quantum Interference -- - 16.7 - Quantum Beats in Waveguides with Time-Dependent Boundaries -- - 16.8 - Spin Magnetic Moment -- - 16.9 - Stern-Gerlach Experiment -- - 16.10 - Precession of Spin Magnetic Moment in a Constant Magnetic Field -- - 16.11 - Spin Resonance -- - 16.12 - A Simple Model of Atomic Clock -- - 16.13 - Berry's Phase -- - 17.1 - Ground State of Two-Electron Atom -- - 17.2 - Hartree and Hartree-Fock Approximations -- - 17.3 - Second Quantization -- - 17.4 - Second-Quantized Formulation of the Many-Boson Problem -- - 17.5 - Many-Fermion Problem -- - 17.6 - Pair Correlations Between Fermions -- - 17.7 - Uncertainty Relations for a Many-Fermion System -- - 17.8 - Pair Correlation Function for Noninteracting Bosons -- - 17.9 - Bogoliubov Transformation for a Many-Boson System -- 17.10 - Scattering of Two Quasi-Particles -- - 17.11 - Bogoliubov Transformation for Fermions Interacting through Pairing Forces -- - 17.12 - Damped Harmonic Oscillator -- - 18.1 - Coherent State of the Radiation Field -- - 18.2 - Casimir Force -- - 18.3 - Casimir Force Between Parallel Conductors -- - 18.4 - Casimir Force in a Cavity with Conducting Walls -- - 19.1 - Theory of Natural Line Width -- - 19.2 - The Lamb Shift -- - 19.3 - Heisenberg's Equations for Interaction of an Atom with Radiation -- - 20.1 - EPR Experiment with Particles -- - 20.2 - Classical and Quantum Mechanical Operational Concepts of Measurement -- - 20.3 - Collapse of the Wave Function -- - 20.4 - Quantum versus Classical Correlations This book provides a detailed account of quantum theory with a much greater emphasis on the Heisenberg equations of motion and the matrix method. -- The book features a deeper treatment of the fundamental concepts such as the rules of constructing quantum mechanical operators and the classical-quantal correspondence; the exact and approximate methods based on the Heisenberg equations; the determinantal approach to the scattering theory and the LSZ reduction formalism where the latter method is used to obtain the transition matrix. The uncertainty relations for a number of different observables are derived and discussed. A comprehensive chapter on the quantization of systems with nonlocalized interaction is included. Exact solvable models, and approximate techniques for solution of realistic many-body problems are also considered. The book takes a unified look in the final chapter, examining the question of measurement in quantum theory, with an introduction to the Bell's inequalities. --Book Jacket SCIENCE / Physics / Quantum Theory bisacsh Quantum theory fast Quantentheorie Quantum theory Matrizenmechanik (DE-588)4169128-3 gnd rswk-swf Matrizenmechanik (DE-588)4169128-3 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373246 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Razavy, Mohsen Heisenberg's quantum mechanics SCIENCE / Physics / Quantum Theory bisacsh Quantum theory fast Quantentheorie Quantum theory Matrizenmechanik (DE-588)4169128-3 gnd |
subject_GND | (DE-588)4169128-3 |
title | Heisenberg's quantum mechanics |
title_auth | Heisenberg's quantum mechanics |
title_exact_search | Heisenberg's quantum mechanics |
title_full | Heisenberg's quantum mechanics Mohsen Razavy |
title_fullStr | Heisenberg's quantum mechanics Mohsen Razavy |
title_full_unstemmed | Heisenberg's quantum mechanics Mohsen Razavy |
title_short | Heisenberg's quantum mechanics |
title_sort | heisenberg s quantum mechanics |
topic | SCIENCE / Physics / Quantum Theory bisacsh Quantum theory fast Quantentheorie Quantum theory Matrizenmechanik (DE-588)4169128-3 gnd |
topic_facet | SCIENCE / Physics / Quantum Theory Quantum theory Quantentheorie Matrizenmechanik |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373246 |
work_keys_str_mv | AT razavymohsen heisenbergsquantummechanics |