Convex analysis in general vector spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, N.J.
World Scientific
c2002
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 349-357) and index Annotation The primary aim of this book is to present the conjugate and sub/differential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of convex functions. Such applications are: the study of well-conditioned convex functions, uniformly convex and uniformly smooth convex functions, best approximation problems, characterizations of convexity, the study of the sets of weak sharp minima, well-behaved functions and the existence of global error bounds for convex inequalities, as well as the study of monotone multifunctions by using convex functions |
Beschreibung: | 1 Online-Ressource (xx, 367 p.) |
ISBN: | 9789812777096 9812380671 9812777091 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043123350 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2002 |||| o||u| ||||||eng d | ||
020 | |a 9789812777096 |c electronic bk. |9 978-981-277-709-6 | ||
020 | |a 9812380671 |c alk. paper |9 981-238-067-1 | ||
020 | |a 9812777091 |c electronic bk. |9 981-277-709-1 | ||
035 | |a (OCoLC)285163112 | ||
035 | |a (DE-599)BVBBV043123350 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.8 |2 21 | |
100 | 1 | |a Zalinescu, C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Convex analysis in general vector spaces |c C Zălinescu |
264 | 1 | |a River Edge, N.J. |b World Scientific |c c2002 | |
300 | |a 1 Online-Ressource (xx, 367 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 349-357) and index | ||
500 | |a Annotation The primary aim of this book is to present the conjugate and sub/differential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of convex functions. Such applications are: the study of well-conditioned convex functions, uniformly convex and uniformly smooth convex functions, best approximation problems, characterizations of convexity, the study of the sets of weak sharp minima, well-behaved functions and the existence of global error bounds for convex inequalities, as well as the study of monotone multifunctions by using convex functions | ||
650 | 4 | |a Fonctions convexes | |
650 | 4 | |a Ensembles convexes | |
650 | 4 | |a Analyse fonctionnelle | |
650 | 4 | |a Espaces vectoriels | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 7 | |a Convex functions |2 fast | |
650 | 7 | |a Convex sets |2 fast | |
650 | 7 | |a Functional analysis |2 fast | |
650 | 7 | |a Vector spaces |2 fast | |
650 | 4 | |a Convex functions | |
650 | 4 | |a Convex sets | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Vector spaces | |
650 | 0 | 7 | |a Konvexe Analysis |0 (DE-588)4138566-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vektorraum |0 (DE-588)4130622-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Vektorraum |0 (DE-588)4130622-3 |D s |
689 | 0 | 1 | |a Konvexe Analysis |0 (DE-588)4138566-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210672 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028547541 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210672 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210672 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175554932375552 |
---|---|
any_adam_object | |
author | Zalinescu, C. |
author_facet | Zalinescu, C. |
author_role | aut |
author_sort | Zalinescu, C. |
author_variant | c z cz |
building | Verbundindex |
bvnumber | BV043123350 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)285163112 (DE-599)BVBBV043123350 |
dewey-full | 515/.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.8 |
dewey-search | 515/.8 |
dewey-sort | 3515 18 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03057nmm a2200601zc 4500</leader><controlfield tag="001">BV043123350</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812777096</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-277-709-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812380671</subfield><subfield code="c">alk. paper</subfield><subfield code="9">981-238-067-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812777091</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-277-709-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)285163112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043123350</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.8</subfield><subfield code="2">21</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zalinescu, C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convex analysis in general vector spaces</subfield><subfield code="c">C Zălinescu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">River Edge, N.J.</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xx, 367 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 349-357) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Annotation The primary aim of this book is to present the conjugate and sub/differential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of convex functions. Such applications are: the study of well-conditioned convex functions, uniformly convex and uniformly smooth convex functions, best approximation problems, characterizations of convexity, the study of the sets of weak sharp minima, well-behaved functions and the existence of global error bounds for convex inequalities, as well as the study of monotone multifunctions by using convex functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions convexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensembles convexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse fonctionnelle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Espaces vectoriels</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convex functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convex sets</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functional analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vector spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Analysis</subfield><subfield code="0">(DE-588)4138566-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorraum</subfield><subfield code="0">(DE-588)4130622-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vektorraum</subfield><subfield code="0">(DE-588)4130622-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konvexe Analysis</subfield><subfield code="0">(DE-588)4138566-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210672</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028547541</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210672</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210672</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043123350 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:08Z |
institution | BVB |
isbn | 9789812777096 9812380671 9812777091 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028547541 |
oclc_num | 285163112 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xx, 367 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | World Scientific |
record_format | marc |
spelling | Zalinescu, C. Verfasser aut Convex analysis in general vector spaces C Zălinescu River Edge, N.J. World Scientific c2002 1 Online-Ressource (xx, 367 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (p. 349-357) and index Annotation The primary aim of this book is to present the conjugate and sub/differential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of convex functions. Such applications are: the study of well-conditioned convex functions, uniformly convex and uniformly smooth convex functions, best approximation problems, characterizations of convexity, the study of the sets of weak sharp minima, well-behaved functions and the existence of global error bounds for convex inequalities, as well as the study of monotone multifunctions by using convex functions Fonctions convexes Ensembles convexes Analyse fonctionnelle Espaces vectoriels MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Convex functions fast Convex sets fast Functional analysis fast Vector spaces fast Convex functions Convex sets Functional analysis Vector spaces Konvexe Analysis (DE-588)4138566-4 gnd rswk-swf Vektorraum (DE-588)4130622-3 gnd rswk-swf Vektorraum (DE-588)4130622-3 s Konvexe Analysis (DE-588)4138566-4 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210672 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Zalinescu, C. Convex analysis in general vector spaces Fonctions convexes Ensembles convexes Analyse fonctionnelle Espaces vectoriels MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Convex functions fast Convex sets fast Functional analysis fast Vector spaces fast Convex functions Convex sets Functional analysis Vector spaces Konvexe Analysis (DE-588)4138566-4 gnd Vektorraum (DE-588)4130622-3 gnd |
subject_GND | (DE-588)4138566-4 (DE-588)4130622-3 |
title | Convex analysis in general vector spaces |
title_auth | Convex analysis in general vector spaces |
title_exact_search | Convex analysis in general vector spaces |
title_full | Convex analysis in general vector spaces C Zălinescu |
title_fullStr | Convex analysis in general vector spaces C Zălinescu |
title_full_unstemmed | Convex analysis in general vector spaces C Zălinescu |
title_short | Convex analysis in general vector spaces |
title_sort | convex analysis in general vector spaces |
topic | Fonctions convexes Ensembles convexes Analyse fonctionnelle Espaces vectoriels MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Convex functions fast Convex sets fast Functional analysis fast Vector spaces fast Convex functions Convex sets Functional analysis Vector spaces Konvexe Analysis (DE-588)4138566-4 gnd Vektorraum (DE-588)4130622-3 gnd |
topic_facet | Fonctions convexes Ensembles convexes Analyse fonctionnelle Espaces vectoriels MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Convex functions Convex sets Functional analysis Vector spaces Konvexe Analysis Vektorraum |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210672 |
work_keys_str_mv | AT zalinescuc convexanalysisingeneralvectorspaces |