Reasoning about theoretical entities:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, N.J.
World Scientific
c2003
|
Schriftenreihe: | Advances in logic
v. 3 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 89-91) and indexes 1. Introduction. 1.1. Interpretations. 2. Definite descriptions -- 2.1. Formal definition of the interpretation. 2.2. Functions from singular descriptions. 2.3. Definite descriptions and modal realism -- 3. Virtual objects. 3.1. Congruence relations. 3.2. Extending the language. 3.3. Second-order and higher-order theories -- 4. Cardinal arithmetic. 4.1 The languages of set theory and arithmetic. 4.2 The canonical simulation. 4.3. Virtual illfounded sets. 5. Iterated virtuality in cardinal arithmetic. 5.1. Doubly virtual cardinals. 5.2. Multiply virtual cardinals. 5.3. Untyped invariant arithmetic. 5.4. Implementation-insensitivity. 5.5. Iterated virtuality and reflection -- 6. Ordinals. 6.1. The elementary theory of wellorderings. 6.2. The language of ordinal arithmetic. 6.3. Ordinals of wellorderings of sets of ordinals. 6.4. Implementations of ordinal arithmetic Reductionism is one of those philosophical myths that are either enthusiastically embraced or wholeheartedly rejected. And, like all other philosophical myths, it rarely gets serious consideration. Reasoning About Theoretical Entities strives to give reductionism its day in court, as it were, by explicitly developing several versions of the reductionist project and assessing their merits within the framework of modern symbolic logic. Not since the days of Carnap's Aufbau has reductionism received such close attention (albeit in a necessarily restricted and regimented setting such as that of modern mathematical logic). As such this book fills a void in the philosophical literature and presents a challenge to every would-be (anti-)reductionist. It should be required reading for every first-year graduate student in philosophy |
Beschreibung: | 1 Online-Ressource (93 p.) |
ISBN: | 9789812795038 9812795030 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043123239 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2003 |||| o||u| ||||||eng d | ||
020 | |a 9789812795038 |c electronic bk. |9 978-981-279-503-8 | ||
020 | |a 9812795030 |c electronic bk. |9 981-279-503-0 | ||
035 | |a (OCoLC)262845443 | ||
035 | |a (DE-599)BVBBV043123239 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 511.3 |2 22 | |
100 | 1 | |a Forster, T. E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Reasoning about theoretical entities |c Thomas Forster |
264 | 1 | |a River Edge, N.J. |b World Scientific |c c2003 | |
300 | |a 1 Online-Ressource (93 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in logic |v v. 3 | |
500 | |a Includes bibliographical references (p. 89-91) and indexes | ||
500 | |a 1. Introduction. 1.1. Interpretations. 2. Definite descriptions -- 2.1. Formal definition of the interpretation. 2.2. Functions from singular descriptions. 2.3. Definite descriptions and modal realism -- 3. Virtual objects. 3.1. Congruence relations. 3.2. Extending the language. 3.3. Second-order and higher-order theories -- 4. Cardinal arithmetic. 4.1 The languages of set theory and arithmetic. 4.2 The canonical simulation. 4.3. Virtual illfounded sets. 5. Iterated virtuality in cardinal arithmetic. 5.1. Doubly virtual cardinals. 5.2. Multiply virtual cardinals. 5.3. Untyped invariant arithmetic. 5.4. Implementation-insensitivity. 5.5. Iterated virtuality and reflection -- 6. Ordinals. 6.1. The elementary theory of wellorderings. 6.2. The language of ordinal arithmetic. 6.3. Ordinals of wellorderings of sets of ordinals. 6.4. Implementations of ordinal arithmetic | ||
500 | |a Reductionism is one of those philosophical myths that are either enthusiastically embraced or wholeheartedly rejected. And, like all other philosophical myths, it rarely gets serious consideration. Reasoning About Theoretical Entities strives to give reductionism its day in court, as it were, by explicitly developing several versions of the reductionist project and assessing their merits within the framework of modern symbolic logic. Not since the days of Carnap's Aufbau has reductionism received such close attention (albeit in a necessarily restricted and regimented setting such as that of modern mathematical logic). As such this book fills a void in the philosophical literature and presents a challenge to every would-be (anti-)reductionist. It should be required reading for every first-year graduate student in philosophy | ||
650 | 7 | |a MATHEMATICS / Infinity |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Logic |2 bisacsh | |
650 | 7 | |a Cardinal numbers |2 fast | |
650 | 7 | |a Logic, Symbolic and mathematical |2 fast | |
650 | 7 | |a Reductionism |2 fast | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Reductionism | |
650 | 4 | |a Cardinal numbers | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235609 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028547430 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235609 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235609 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175554746777600 |
---|---|
any_adam_object | |
author | Forster, T. E. |
author_facet | Forster, T. E. |
author_role | aut |
author_sort | Forster, T. E. |
author_variant | t e f te tef |
building | Verbundindex |
bvnumber | BV043123239 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)262845443 (DE-599)BVBBV043123239 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03511nmm a2200469zcb4500</leader><controlfield tag="001">BV043123239</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812795038</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-279-503-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812795030</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-279-503-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)262845443</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043123239</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Forster, T. E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reasoning about theoretical entities</subfield><subfield code="c">Thomas Forster</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">River Edge, N.J.</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (93 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in logic</subfield><subfield code="v">v. 3</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 89-91) and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction. 1.1. Interpretations. 2. Definite descriptions -- 2.1. Formal definition of the interpretation. 2.2. Functions from singular descriptions. 2.3. Definite descriptions and modal realism -- 3. Virtual objects. 3.1. Congruence relations. 3.2. Extending the language. 3.3. Second-order and higher-order theories -- 4. Cardinal arithmetic. 4.1 The languages of set theory and arithmetic. 4.2 The canonical simulation. 4.3. Virtual illfounded sets. 5. Iterated virtuality in cardinal arithmetic. 5.1. Doubly virtual cardinals. 5.2. Multiply virtual cardinals. 5.3. Untyped invariant arithmetic. 5.4. Implementation-insensitivity. 5.5. Iterated virtuality and reflection -- 6. Ordinals. 6.1. The elementary theory of wellorderings. 6.2. The language of ordinal arithmetic. 6.3. Ordinals of wellorderings of sets of ordinals. 6.4. Implementations of ordinal arithmetic</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Reductionism is one of those philosophical myths that are either enthusiastically embraced or wholeheartedly rejected. And, like all other philosophical myths, it rarely gets serious consideration. Reasoning About Theoretical Entities strives to give reductionism its day in court, as it were, by explicitly developing several versions of the reductionist project and assessing their merits within the framework of modern symbolic logic. Not since the days of Carnap's Aufbau has reductionism received such close attention (albeit in a necessarily restricted and regimented setting such as that of modern mathematical logic). As such this book fills a void in the philosophical literature and presents a challenge to every would-be (anti-)reductionist. It should be required reading for every first-year graduate student in philosophy</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Infinity</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Logic</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cardinal numbers</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reductionism</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reductionism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cardinal numbers</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235609</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028547430</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235609</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235609</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043123239 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:08Z |
institution | BVB |
isbn | 9789812795038 9812795030 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028547430 |
oclc_num | 262845443 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (93 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | World Scientific |
record_format | marc |
series2 | Advances in logic |
spelling | Forster, T. E. Verfasser aut Reasoning about theoretical entities Thomas Forster River Edge, N.J. World Scientific c2003 1 Online-Ressource (93 p.) txt rdacontent c rdamedia cr rdacarrier Advances in logic v. 3 Includes bibliographical references (p. 89-91) and indexes 1. Introduction. 1.1. Interpretations. 2. Definite descriptions -- 2.1. Formal definition of the interpretation. 2.2. Functions from singular descriptions. 2.3. Definite descriptions and modal realism -- 3. Virtual objects. 3.1. Congruence relations. 3.2. Extending the language. 3.3. Second-order and higher-order theories -- 4. Cardinal arithmetic. 4.1 The languages of set theory and arithmetic. 4.2 The canonical simulation. 4.3. Virtual illfounded sets. 5. Iterated virtuality in cardinal arithmetic. 5.1. Doubly virtual cardinals. 5.2. Multiply virtual cardinals. 5.3. Untyped invariant arithmetic. 5.4. Implementation-insensitivity. 5.5. Iterated virtuality and reflection -- 6. Ordinals. 6.1. The elementary theory of wellorderings. 6.2. The language of ordinal arithmetic. 6.3. Ordinals of wellorderings of sets of ordinals. 6.4. Implementations of ordinal arithmetic Reductionism is one of those philosophical myths that are either enthusiastically embraced or wholeheartedly rejected. And, like all other philosophical myths, it rarely gets serious consideration. Reasoning About Theoretical Entities strives to give reductionism its day in court, as it were, by explicitly developing several versions of the reductionist project and assessing their merits within the framework of modern symbolic logic. Not since the days of Carnap's Aufbau has reductionism received such close attention (albeit in a necessarily restricted and regimented setting such as that of modern mathematical logic). As such this book fills a void in the philosophical literature and presents a challenge to every would-be (anti-)reductionist. It should be required reading for every first-year graduate student in philosophy MATHEMATICS / Infinity bisacsh MATHEMATICS / Logic bisacsh Cardinal numbers fast Logic, Symbolic and mathematical fast Reductionism fast Logic, Symbolic and mathematical Reductionism Cardinal numbers http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235609 Aggregator Volltext |
spellingShingle | Forster, T. E. Reasoning about theoretical entities MATHEMATICS / Infinity bisacsh MATHEMATICS / Logic bisacsh Cardinal numbers fast Logic, Symbolic and mathematical fast Reductionism fast Logic, Symbolic and mathematical Reductionism Cardinal numbers |
title | Reasoning about theoretical entities |
title_auth | Reasoning about theoretical entities |
title_exact_search | Reasoning about theoretical entities |
title_full | Reasoning about theoretical entities Thomas Forster |
title_fullStr | Reasoning about theoretical entities Thomas Forster |
title_full_unstemmed | Reasoning about theoretical entities Thomas Forster |
title_short | Reasoning about theoretical entities |
title_sort | reasoning about theoretical entities |
topic | MATHEMATICS / Infinity bisacsh MATHEMATICS / Logic bisacsh Cardinal numbers fast Logic, Symbolic and mathematical fast Reductionism fast Logic, Symbolic and mathematical Reductionism Cardinal numbers |
topic_facet | MATHEMATICS / Infinity MATHEMATICS / Logic Cardinal numbers Logic, Symbolic and mathematical Reductionism |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235609 |
work_keys_str_mv | AT forsterte reasoningabouttheoreticalentities |