Szegő's theorem and its descendants: spectral theory for L2 perturbations of orthogonal polynomials
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
© 2011
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and indexes This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szego's classic 1915 theorem and its 1920 extension. Barry Simon emphasizes necessary and sufficient conditions, and provides mathematical background that until now has been available only in journals. Topics include background from the theory of meromorphic functions on hyperelliptic surfaces and the study of covering maps of the Riemann sphere with a finite number of slits removed. This allows for the first book-length treatment of orthogonal polynomia Cover; Contents; Preface; Chapter 1. Gems of Spectral Theory; Chapter 2. Szego's Theorem; Chapter 3. The Killip-Simon Theorem: Szego for OPRL; Chapter 4. Sum Rules and Consequences for Matrix Orthogonal Polynomials; Chapter 5. Periodic OPRL; Chapter 6. Toda Flows and Symplectic Structures; Chapter 7. Right Limits; Chapter 8. Szego and Killip-Simon Theorems for Periodic OPRL; Chapter 9. Szego's Theorem for Finite Gap OPRL; Chapter 10. A.C. Spectrum for Bethe-Cayley Trees; Bibliography; Author Index; Subject Index |
Beschreibung: | 1 Online-Ressource (x, 650 pages) |
ISBN: | 0691147043 1400837057 9780691147048 9781400837052 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043122706 | ||
003 | DE-604 | ||
005 | 20180529 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2011 |||| o||u| ||||||eng d | ||
020 | |a 0691147043 |9 0-691-14704-3 | ||
020 | |a 1400837057 |c electronic bk. |9 1-4008-3705-7 | ||
020 | |a 9780691147048 |9 978-0-691-14704-8 | ||
020 | |a 9781400837052 |c electronic bk. |9 978-1-4008-3705-2 | ||
035 | |a (OCoLC)677162060 | ||
035 | |a (DE-599)BVBBV043122706 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.55 |2 22 | |
100 | 1 | |a Simon, Barry |d 1946- |e Verfasser |0 (DE-588)134200195 |4 aut | |
245 | 1 | 0 | |a Szegő's theorem and its descendants |b spectral theory for L2 perturbations of orthogonal polynomials |c Barry Simon |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c © 2011 | |
300 | |a 1 Online-Ressource (x, 650 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and indexes | ||
500 | |a This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szego's classic 1915 theorem and its 1920 extension. Barry Simon emphasizes necessary and sufficient conditions, and provides mathematical background that until now has been available only in journals. Topics include background from the theory of meromorphic functions on hyperelliptic surfaces and the study of covering maps of the Riemann sphere with a finite number of slits removed. This allows for the first book-length treatment of orthogonal polynomia | ||
500 | |a Cover; Contents; Preface; Chapter 1. Gems of Spectral Theory; Chapter 2. Szego's Theorem; Chapter 3. The Killip-Simon Theorem: Szego for OPRL; Chapter 4. Sum Rules and Consequences for Matrix Orthogonal Polynomials; Chapter 5. Periodic OPRL; Chapter 6. Toda Flows and Symplectic Structures; Chapter 7. Right Limits; Chapter 8. Szego and Killip-Simon Theorems for Periodic OPRL; Chapter 9. Szego's Theorem for Finite Gap OPRL; Chapter 10. A.C. Spectrum for Bethe-Cayley Trees; Bibliography; Author Index; Subject Index | ||
600 | 1 | 7 | |a Szegö, Gábor |d 1895-1985 |0 (DE-588)119089157 |2 gnd |9 rswk-swf |
650 | 4 | |a Physics | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Science | |
650 | 4 | |a Spectral theory (Mathematics) | |
650 | 4 | |a Orthogonal polynomials | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 7 | |a SCIENCE / Physics / Mathematical & Computational |2 bisacsh | |
650 | 7 | |a Orthogonal polynomials |2 fast | |
650 | 7 | |a Spectral theory (Mathematics) |2 fast | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Naturwissenschaft | |
650 | 4 | |a Spectral theory (Mathematics) | |
650 | 4 | |a Orthogonal polynomials | |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | 1 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |D s |
689 | 0 | 2 | |a Szegö, Gábor |d 1895-1985 |0 (DE-588)119089157 |D p |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340202 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028546896 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340202 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340202 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175553614315520 |
---|---|
any_adam_object | |
author | Simon, Barry 1946- |
author_GND | (DE-588)134200195 |
author_facet | Simon, Barry 1946- |
author_role | aut |
author_sort | Simon, Barry 1946- |
author_variant | b s bs |
building | Verbundindex |
bvnumber | BV043122706 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)677162060 (DE-599)BVBBV043122706 |
dewey-full | 515/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.55 |
dewey-search | 515/.55 |
dewey-sort | 3515 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03822nmm a2200649zc 4500</leader><controlfield tag="001">BV043122706</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180529 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691147043</subfield><subfield code="9">0-691-14704-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400837057</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-3705-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691147048</subfield><subfield code="9">978-0-691-14704-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400837052</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-3705-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)677162060</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043122706</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Simon, Barry</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)134200195</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Szegő's theorem and its descendants</subfield><subfield code="b">spectral theory for L2 perturbations of orthogonal polynomials</subfield><subfield code="c">Barry Simon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">© 2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 650 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szego's classic 1915 theorem and its 1920 extension. Barry Simon emphasizes necessary and sufficient conditions, and provides mathematical background that until now has been available only in journals. Topics include background from the theory of meromorphic functions on hyperelliptic surfaces and the study of covering maps of the Riemann sphere with a finite number of slits removed. This allows for the first book-length treatment of orthogonal polynomia</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover; Contents; Preface; Chapter 1. Gems of Spectral Theory; Chapter 2. Szego's Theorem; Chapter 3. The Killip-Simon Theorem: Szego for OPRL; Chapter 4. Sum Rules and Consequences for Matrix Orthogonal Polynomials; Chapter 5. Periodic OPRL; Chapter 6. Toda Flows and Symplectic Structures; Chapter 7. Right Limits; Chapter 8. Szego and Killip-Simon Theorems for Periodic OPRL; Chapter 9. Szego's Theorem for Finite Gap OPRL; Chapter 10. A.C. Spectrum for Bethe-Cayley Trees; Bibliography; Author Index; Subject Index</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Szegö, Gábor</subfield><subfield code="d">1895-1985</subfield><subfield code="0">(DE-588)119089157</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / Mathematical & Computational</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orthogonal polynomials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spectral theory (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal polynomials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Szegö, Gábor</subfield><subfield code="d">1895-1985</subfield><subfield code="0">(DE-588)119089157</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340202</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028546896</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340202</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340202</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043122706 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:07Z |
institution | BVB |
isbn | 0691147043 1400837057 9780691147048 9781400837052 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028546896 |
oclc_num | 677162060 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (x, 650 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Princeton University Press |
record_format | marc |
spelling | Simon, Barry 1946- Verfasser (DE-588)134200195 aut Szegő's theorem and its descendants spectral theory for L2 perturbations of orthogonal polynomials Barry Simon Princeton, N.J. Princeton University Press © 2011 1 Online-Ressource (x, 650 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and indexes This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szego's classic 1915 theorem and its 1920 extension. Barry Simon emphasizes necessary and sufficient conditions, and provides mathematical background that until now has been available only in journals. Topics include background from the theory of meromorphic functions on hyperelliptic surfaces and the study of covering maps of the Riemann sphere with a finite number of slits removed. This allows for the first book-length treatment of orthogonal polynomia Cover; Contents; Preface; Chapter 1. Gems of Spectral Theory; Chapter 2. Szego's Theorem; Chapter 3. The Killip-Simon Theorem: Szego for OPRL; Chapter 4. Sum Rules and Consequences for Matrix Orthogonal Polynomials; Chapter 5. Periodic OPRL; Chapter 6. Toda Flows and Symplectic Structures; Chapter 7. Right Limits; Chapter 8. Szego and Killip-Simon Theorems for Periodic OPRL; Chapter 9. Szego's Theorem for Finite Gap OPRL; Chapter 10. A.C. Spectrum for Bethe-Cayley Trees; Bibliography; Author Index; Subject Index Szegö, Gábor 1895-1985 (DE-588)119089157 gnd rswk-swf Physics Mathematics Science Spectral theory (Mathematics) Orthogonal polynomials MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh SCIENCE / Physics / Mathematical & Computational bisacsh Orthogonal polynomials fast Spectral theory (Mathematics) fast Mathematik Naturwissenschaft Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Orthogonale Polynome (DE-588)4172863-4 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 s Orthogonale Polynome (DE-588)4172863-4 s Szegö, Gábor 1895-1985 (DE-588)119089157 p 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340202 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Simon, Barry 1946- Szegő's theorem and its descendants spectral theory for L2 perturbations of orthogonal polynomials Szegö, Gábor 1895-1985 (DE-588)119089157 gnd Physics Mathematics Science Spectral theory (Mathematics) Orthogonal polynomials MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh SCIENCE / Physics / Mathematical & Computational bisacsh Orthogonal polynomials fast Spectral theory (Mathematics) fast Mathematik Naturwissenschaft Spektraltheorie (DE-588)4116561-5 gnd Orthogonale Polynome (DE-588)4172863-4 gnd |
subject_GND | (DE-588)119089157 (DE-588)4116561-5 (DE-588)4172863-4 |
title | Szegő's theorem and its descendants spectral theory for L2 perturbations of orthogonal polynomials |
title_auth | Szegő's theorem and its descendants spectral theory for L2 perturbations of orthogonal polynomials |
title_exact_search | Szegő's theorem and its descendants spectral theory for L2 perturbations of orthogonal polynomials |
title_full | Szegő's theorem and its descendants spectral theory for L2 perturbations of orthogonal polynomials Barry Simon |
title_fullStr | Szegő's theorem and its descendants spectral theory for L2 perturbations of orthogonal polynomials Barry Simon |
title_full_unstemmed | Szegő's theorem and its descendants spectral theory for L2 perturbations of orthogonal polynomials Barry Simon |
title_short | Szegő's theorem and its descendants |
title_sort | szego s theorem and its descendants spectral theory for l2 perturbations of orthogonal polynomials |
title_sub | spectral theory for L2 perturbations of orthogonal polynomials |
topic | Szegö, Gábor 1895-1985 (DE-588)119089157 gnd Physics Mathematics Science Spectral theory (Mathematics) Orthogonal polynomials MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh SCIENCE / Physics / Mathematical & Computational bisacsh Orthogonal polynomials fast Spectral theory (Mathematics) fast Mathematik Naturwissenschaft Spektraltheorie (DE-588)4116561-5 gnd Orthogonale Polynome (DE-588)4172863-4 gnd |
topic_facet | Szegö, Gábor 1895-1985 Physics Mathematics Science Spectral theory (Mathematics) Orthogonal polynomials MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis SCIENCE / Physics / Mathematical & Computational Mathematik Naturwissenschaft Spektraltheorie Orthogonale Polynome |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340202 |
work_keys_str_mv | AT simonbarry szegostheoremanditsdescendantsspectraltheoryforl2perturbationsoforthogonalpolynomials |