Szegő's theorem and its descendants: spectral theory for L2 perturbations of orthogonal polynomials
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Simon, Barry 1946- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Princeton, N.J. Princeton University Press © 2011
Schlagworte:
Online-Zugang:FAW01
FAW02
Volltext
Beschreibung:Includes bibliographical references and indexes
This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szego's classic 1915 theorem and its 1920 extension. Barry Simon emphasizes necessary and sufficient conditions, and provides mathematical background that until now has been available only in journals. Topics include background from the theory of meromorphic functions on hyperelliptic surfaces and the study of covering maps of the Riemann sphere with a finite number of slits removed. This allows for the first book-length treatment of orthogonal polynomia
Cover; Contents; Preface; Chapter 1. Gems of Spectral Theory; Chapter 2. Szego's Theorem; Chapter 3. The Killip-Simon Theorem: Szego for OPRL; Chapter 4. Sum Rules and Consequences for Matrix Orthogonal Polynomials; Chapter 5. Periodic OPRL; Chapter 6. Toda Flows and Symplectic Structures; Chapter 7. Right Limits; Chapter 8. Szego and Killip-Simon Theorems for Periodic OPRL; Chapter 9. Szego's Theorem for Finite Gap OPRL; Chapter 10. A.C. Spectrum for Bethe-Cayley Trees; Bibliography; Author Index; Subject Index
Beschreibung:1 Online-Ressource (x, 650 pages)
ISBN:0691147043
1400837057
9780691147048
9781400837052

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen