Data mining in time series databases:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
New Jersey
World Scientific
©2004
|
Schriftenreihe: | Series in machine perception and artificial intelligence
v. 57 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references Segmenting time series : a survey and novel approach - E. Keogh [and others] -- - A survey of recent methods for efficient retrieval of similar time sequences - M.L. Hetland -- - Indexing of compressed time series - E. Fink and K.B. Pratt -- - Indexing time-series under conditions of noise - M. Vlachos, D. Gunopulos, and G. Das -- - Change detection in classification models induced from time series data - G. Zeira [and others] -- - Classification and detection of abnormal events in time series of graphs - H. Bunke and M. Kraetzl -- - Boosting interval-based literals : variable length and early classification - C.J. Alonso González and J.J. Rodríguez Diez -- - Median strings : a review - X. Jiang, H. Bunke, and J. Csirik Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This manual examines state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the text also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed |
Beschreibung: | 1 Online-Ressource (xi, 192 pages) |
ISBN: | 1281347760 1423723023 9781281347763 9781423723028 9789812382900 9812382909 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043121047 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2004 |||| o||u| ||||||eng d | ||
020 | |a 1281347760 |9 1-281-34776-0 | ||
020 | |a 1423723023 |9 1-4237-2302-3 | ||
020 | |a 9781281347763 |9 978-1-281-34776-3 | ||
020 | |a 9781423723028 |9 978-1-4237-2302-8 | ||
020 | |a 9789812382900 |9 978-981-238-290-0 | ||
020 | |a 9812382909 |9 981-238-290-9 | ||
035 | |a (OCoLC)61395447 | ||
035 | |a (DE-599)BVBBV043121047 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 006.33 |2 22 | |
245 | 1 | 0 | |a Data mining in time series databases |c editors, Mark Last, Abraham Kandel, Horst Bunke |
264 | 1 | |a New Jersey |b World Scientific |c ©2004 | |
300 | |a 1 Online-Ressource (xi, 192 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series in machine perception and artificial intelligence |v v. 57 | |
500 | |a Includes bibliographical references | ||
500 | |a Segmenting time series : a survey and novel approach - E. Keogh [and others] -- - A survey of recent methods for efficient retrieval of similar time sequences - M.L. Hetland -- - Indexing of compressed time series - E. Fink and K.B. Pratt -- - Indexing time-series under conditions of noise - M. Vlachos, D. Gunopulos, and G. Das -- - Change detection in classification models induced from time series data - G. Zeira [and others] -- - Classification and detection of abnormal events in time series of graphs - H. Bunke and M. Kraetzl -- - Boosting interval-based literals : variable length and early classification - C.J. Alonso González and J.J. Rodríguez Diez -- - Median strings : a review - X. Jiang, H. Bunke, and J. Csirik | ||
500 | |a Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This manual examines state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the text also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed | ||
650 | 4 | |a Exploration de données (Informatique) | |
650 | 4 | |a Bases de données réparties | |
650 | 7 | |a COMPUTERS / Expert Systems |2 bisacsh | |
650 | 7 | |a Data mining |2 fast | |
650 | 7 | |a Distributed databases |2 fast | |
650 | 7 | |a Exploration de données (Informatique) |2 rvm | |
650 | 7 | |a Bases de données réparties |2 rvm | |
650 | 4 | |a Data mining | |
650 | 4 | |a Distributed databases | |
650 | 0 | 7 | |a Faktendatenbank |0 (DE-588)4212429-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zeitreihe |0 (DE-588)4127298-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zeitreihe |0 (DE-588)4127298-5 |D s |
689 | 0 | 1 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | 2 | |a Faktendatenbank |0 (DE-588)4212429-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Last, Mark |e Sonstige |4 oth | |
700 | 1 | |a Kandel, Abraham |e Sonstige |4 oth | |
700 | 1 | |a Bunke, Horst |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=137593 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028545238 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=137593 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=137593 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175550493753344 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV043121047 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)61395447 (DE-599)BVBBV043121047 |
dewey-full | 006.33 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.33 |
dewey-search | 006.33 |
dewey-sort | 16.33 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04077nmm a2200649zcb4500</leader><controlfield tag="001">BV043121047</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281347760</subfield><subfield code="9">1-281-34776-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1423723023</subfield><subfield code="9">1-4237-2302-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281347763</subfield><subfield code="9">978-1-281-34776-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781423723028</subfield><subfield code="9">978-1-4237-2302-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812382900</subfield><subfield code="9">978-981-238-290-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812382909</subfield><subfield code="9">981-238-290-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)61395447</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043121047</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.33</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data mining in time series databases</subfield><subfield code="c">editors, Mark Last, Abraham Kandel, Horst Bunke</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">©2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 192 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in machine perception and artificial intelligence</subfield><subfield code="v">v. 57</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Segmenting time series : a survey and novel approach - E. Keogh [and others] -- - A survey of recent methods for efficient retrieval of similar time sequences - M.L. Hetland -- - Indexing of compressed time series - E. Fink and K.B. Pratt -- - Indexing time-series under conditions of noise - M. Vlachos, D. Gunopulos, and G. Das -- - Change detection in classification models induced from time series data - G. Zeira [and others] -- - Classification and detection of abnormal events in time series of graphs - H. Bunke and M. Kraetzl -- - Boosting interval-based literals : variable length and early classification - C.J. Alonso González and J.J. Rodríguez Diez -- - Median strings : a review - X. Jiang, H. Bunke, and J. Csirik</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This manual examines state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the text also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bases de données réparties</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Expert Systems</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data mining</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Distributed databases</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Exploration de données (Informatique)</subfield><subfield code="2">rvm</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bases de données réparties</subfield><subfield code="2">rvm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed databases</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faktendatenbank</subfield><subfield code="0">(DE-588)4212429-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitreihe</subfield><subfield code="0">(DE-588)4127298-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zeitreihe</subfield><subfield code="0">(DE-588)4127298-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Faktendatenbank</subfield><subfield code="0">(DE-588)4212429-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Last, Mark</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kandel, Abraham</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bunke, Horst</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=137593</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028545238</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=137593</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=137593</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043121047 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:04Z |
institution | BVB |
isbn | 1281347760 1423723023 9781281347763 9781423723028 9789812382900 9812382909 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028545238 |
oclc_num | 61395447 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xi, 192 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | World Scientific |
record_format | marc |
series2 | Series in machine perception and artificial intelligence |
spelling | Data mining in time series databases editors, Mark Last, Abraham Kandel, Horst Bunke New Jersey World Scientific ©2004 1 Online-Ressource (xi, 192 pages) txt rdacontent c rdamedia cr rdacarrier Series in machine perception and artificial intelligence v. 57 Includes bibliographical references Segmenting time series : a survey and novel approach - E. Keogh [and others] -- - A survey of recent methods for efficient retrieval of similar time sequences - M.L. Hetland -- - Indexing of compressed time series - E. Fink and K.B. Pratt -- - Indexing time-series under conditions of noise - M. Vlachos, D. Gunopulos, and G. Das -- - Change detection in classification models induced from time series data - G. Zeira [and others] -- - Classification and detection of abnormal events in time series of graphs - H. Bunke and M. Kraetzl -- - Boosting interval-based literals : variable length and early classification - C.J. Alonso González and J.J. Rodríguez Diez -- - Median strings : a review - X. Jiang, H. Bunke, and J. Csirik Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This manual examines state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the text also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed Exploration de données (Informatique) Bases de données réparties COMPUTERS / Expert Systems bisacsh Data mining fast Distributed databases fast Exploration de données (Informatique) rvm Bases de données réparties rvm Data mining Distributed databases Faktendatenbank (DE-588)4212429-3 gnd rswk-swf Zeitreihe (DE-588)4127298-5 gnd rswk-swf Data Mining (DE-588)4428654-5 gnd rswk-swf Zeitreihe (DE-588)4127298-5 s Data Mining (DE-588)4428654-5 s Faktendatenbank (DE-588)4212429-3 s 1\p DE-604 Last, Mark Sonstige oth Kandel, Abraham Sonstige oth Bunke, Horst Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=137593 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Data mining in time series databases Exploration de données (Informatique) Bases de données réparties COMPUTERS / Expert Systems bisacsh Data mining fast Distributed databases fast Exploration de données (Informatique) rvm Bases de données réparties rvm Data mining Distributed databases Faktendatenbank (DE-588)4212429-3 gnd Zeitreihe (DE-588)4127298-5 gnd Data Mining (DE-588)4428654-5 gnd |
subject_GND | (DE-588)4212429-3 (DE-588)4127298-5 (DE-588)4428654-5 |
title | Data mining in time series databases |
title_auth | Data mining in time series databases |
title_exact_search | Data mining in time series databases |
title_full | Data mining in time series databases editors, Mark Last, Abraham Kandel, Horst Bunke |
title_fullStr | Data mining in time series databases editors, Mark Last, Abraham Kandel, Horst Bunke |
title_full_unstemmed | Data mining in time series databases editors, Mark Last, Abraham Kandel, Horst Bunke |
title_short | Data mining in time series databases |
title_sort | data mining in time series databases |
topic | Exploration de données (Informatique) Bases de données réparties COMPUTERS / Expert Systems bisacsh Data mining fast Distributed databases fast Exploration de données (Informatique) rvm Bases de données réparties rvm Data mining Distributed databases Faktendatenbank (DE-588)4212429-3 gnd Zeitreihe (DE-588)4127298-5 gnd Data Mining (DE-588)4428654-5 gnd |
topic_facet | Exploration de données (Informatique) Bases de données réparties COMPUTERS / Expert Systems Data mining Distributed databases Faktendatenbank Zeitreihe Data Mining |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=137593 |
work_keys_str_mv | AT lastmark dataminingintimeseriesdatabases AT kandelabraham dataminingintimeseriesdatabases AT bunkehorst dataminingintimeseriesdatabases |