Qualitative and asymptotic analysis of differential equations with random perturbations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
© 2011
|
Schriftenreihe: | World Scientific series on nonlinear science
v. 78 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 295-310) and index 1. Differential equations with random right-hand sides and impulsive effects -- 2. Invariant sets for systems with random perturbations -- 3. Linear and quasilinear stochastic Ito systems -- 4. Extensions of Ito systems on a torus -- 5. The averaging method for equations with random perturbations Differential equations with random perturbations are the mathematical models of real-world processes that cannot be described via deterministic laws, and their evolution depends on random factors. The modern theory of differential equations with random perturbations is on the edge of two mathematical disciplines : random processes and ordinary differential equations. Consequently, the sources of these methods come both from the theory of random processes and from the classic theory of differential equations. This work focuses on the approach to stochastic equations from the perspective of ordinary differential equations. For this purpose, both asymptotic and qualitative methods which appeared in the classical theory of differential equations and nonlinear mechanics are developed |
Beschreibung: | 1 Online-Ressource (ix, 312 pages) |
ISBN: | 9789814329064 9789814329071 9814329061 981432907X |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043117069 | ||
003 | DE-604 | ||
005 | 20201205 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2011 |||| o||u| ||||||eng d | ||
020 | |a 9789814329064 |9 978-981-4329-06-4 | ||
020 | |a 9789814329071 |9 978-981-4329-07-1 | ||
020 | |a 9814329061 |9 981-4329-06-1 | ||
020 | |a 981432907X |9 981-4329-07-X | ||
035 | |a (OCoLC)774956316 | ||
035 | |a (DE-599)BVBBV043117069 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.355 |2 23 | |
100 | 1 | |a Samojlenko, Anatolij M. |d 1938-2020 |e Verfasser |0 (DE-588)108416569 |4 aut | |
245 | 1 | 0 | |a Qualitative and asymptotic analysis of differential equations with random perturbations |c Anatoliy M. Samoilenko, Oleksandr Stanzhytskyi |
264 | 1 | |a Singapore |b World Scientific |c © 2011 | |
300 | |a 1 Online-Ressource (ix, 312 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Scientific series on nonlinear science |v v. 78 | |
500 | |a Includes bibliographical references (pages 295-310) and index | ||
500 | |a 1. Differential equations with random right-hand sides and impulsive effects -- 2. Invariant sets for systems with random perturbations -- 3. Linear and quasilinear stochastic Ito systems -- 4. Extensions of Ito systems on a torus -- 5. The averaging method for equations with random perturbations | ||
500 | |a Differential equations with random perturbations are the mathematical models of real-world processes that cannot be described via deterministic laws, and their evolution depends on random factors. The modern theory of differential equations with random perturbations is on the edge of two mathematical disciplines : random processes and ordinary differential equations. Consequently, the sources of these methods come both from the theory of random processes and from the classic theory of differential equations. This work focuses on the approach to stochastic equations from the perspective of ordinary differential equations. For this purpose, both asymptotic and qualitative methods which appeared in the classical theory of differential equations and nonlinear mechanics are developed | ||
650 | 7 | |a MATHEMATICS / Differential Equations / General |2 bisacsh | |
650 | 7 | |a Differential equations / Asymptotic theory |2 fast | |
650 | 7 | |a Differential equations, Nonlinear |2 fast | |
650 | 7 | |a Perturbation (Mathematics) |2 fast | |
650 | 4 | |a Differential equations, Nonlinear | |
650 | 4 | |a Perturbation (Mathematics) | |
650 | 4 | |a Differential equations |x Asymptotic theory | |
650 | 0 | 7 | |a Störungstheorie |0 (DE-588)4128420-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | 1 | |a Störungstheorie |0 (DE-588)4128420-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Stanzhytskyi, Oleksandr |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=426355 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028541260 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=426355 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=426355 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175542770991104 |
---|---|
any_adam_object | |
author | Samojlenko, Anatolij M. 1938-2020 |
author_GND | (DE-588)108416569 |
author_facet | Samojlenko, Anatolij M. 1938-2020 |
author_role | aut |
author_sort | Samojlenko, Anatolij M. 1938-2020 |
author_variant | a m s am ams |
building | Verbundindex |
bvnumber | BV043117069 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)774956316 (DE-599)BVBBV043117069 |
dewey-full | 515/.355 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.355 |
dewey-search | 515/.355 |
dewey-sort | 3515 3355 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03589nmm a2200565zcb4500</leader><controlfield tag="001">BV043117069</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201205 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814329064</subfield><subfield code="9">978-981-4329-06-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814329071</subfield><subfield code="9">978-981-4329-07-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814329061</subfield><subfield code="9">981-4329-06-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981432907X</subfield><subfield code="9">981-4329-07-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)774956316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043117069</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.355</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Samojlenko, Anatolij M.</subfield><subfield code="d">1938-2020</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108416569</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Qualitative and asymptotic analysis of differential equations with random perturbations</subfield><subfield code="c">Anatoliy M. Samoilenko, Oleksandr Stanzhytskyi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">© 2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 312 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Scientific series on nonlinear science</subfield><subfield code="v">v. 78</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 295-310) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Differential equations with random right-hand sides and impulsive effects -- 2. Invariant sets for systems with random perturbations -- 3. Linear and quasilinear stochastic Ito systems -- 4. Extensions of Ito systems on a torus -- 5. The averaging method for equations with random perturbations</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Differential equations with random perturbations are the mathematical models of real-world processes that cannot be described via deterministic laws, and their evolution depends on random factors. The modern theory of differential equations with random perturbations is on the edge of two mathematical disciplines : random processes and ordinary differential equations. Consequently, the sources of these methods come both from the theory of random processes and from the classic theory of differential equations. This work focuses on the approach to stochastic equations from the perspective of ordinary differential equations. For this purpose, both asymptotic and qualitative methods which appeared in the classical theory of differential equations and nonlinear mechanics are developed</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Differential Equations / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations / Asymptotic theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Perturbation (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perturbation (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield><subfield code="x">Asymptotic theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stanzhytskyi, Oleksandr</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=426355</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028541260</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=426355</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=426355</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043117069 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:57Z |
institution | BVB |
isbn | 9789814329064 9789814329071 9814329061 981432907X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028541260 |
oclc_num | 774956316 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (ix, 312 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific |
record_format | marc |
series2 | World Scientific series on nonlinear science |
spelling | Samojlenko, Anatolij M. 1938-2020 Verfasser (DE-588)108416569 aut Qualitative and asymptotic analysis of differential equations with random perturbations Anatoliy M. Samoilenko, Oleksandr Stanzhytskyi Singapore World Scientific © 2011 1 Online-Ressource (ix, 312 pages) txt rdacontent c rdamedia cr rdacarrier World Scientific series on nonlinear science v. 78 Includes bibliographical references (pages 295-310) and index 1. Differential equations with random right-hand sides and impulsive effects -- 2. Invariant sets for systems with random perturbations -- 3. Linear and quasilinear stochastic Ito systems -- 4. Extensions of Ito systems on a torus -- 5. The averaging method for equations with random perturbations Differential equations with random perturbations are the mathematical models of real-world processes that cannot be described via deterministic laws, and their evolution depends on random factors. The modern theory of differential equations with random perturbations is on the edge of two mathematical disciplines : random processes and ordinary differential equations. Consequently, the sources of these methods come both from the theory of random processes and from the classic theory of differential equations. This work focuses on the approach to stochastic equations from the perspective of ordinary differential equations. For this purpose, both asymptotic and qualitative methods which appeared in the classical theory of differential equations and nonlinear mechanics are developed MATHEMATICS / Differential Equations / General bisacsh Differential equations / Asymptotic theory fast Differential equations, Nonlinear fast Perturbation (Mathematics) fast Differential equations, Nonlinear Perturbation (Mathematics) Differential equations Asymptotic theory Störungstheorie (DE-588)4128420-3 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 s Störungstheorie (DE-588)4128420-3 s 1\p DE-604 Stanzhytskyi, Oleksandr Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=426355 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Samojlenko, Anatolij M. 1938-2020 Qualitative and asymptotic analysis of differential equations with random perturbations MATHEMATICS / Differential Equations / General bisacsh Differential equations / Asymptotic theory fast Differential equations, Nonlinear fast Perturbation (Mathematics) fast Differential equations, Nonlinear Perturbation (Mathematics) Differential equations Asymptotic theory Störungstheorie (DE-588)4128420-3 gnd Differentialgleichung (DE-588)4012249-9 gnd |
subject_GND | (DE-588)4128420-3 (DE-588)4012249-9 |
title | Qualitative and asymptotic analysis of differential equations with random perturbations |
title_auth | Qualitative and asymptotic analysis of differential equations with random perturbations |
title_exact_search | Qualitative and asymptotic analysis of differential equations with random perturbations |
title_full | Qualitative and asymptotic analysis of differential equations with random perturbations Anatoliy M. Samoilenko, Oleksandr Stanzhytskyi |
title_fullStr | Qualitative and asymptotic analysis of differential equations with random perturbations Anatoliy M. Samoilenko, Oleksandr Stanzhytskyi |
title_full_unstemmed | Qualitative and asymptotic analysis of differential equations with random perturbations Anatoliy M. Samoilenko, Oleksandr Stanzhytskyi |
title_short | Qualitative and asymptotic analysis of differential equations with random perturbations |
title_sort | qualitative and asymptotic analysis of differential equations with random perturbations |
topic | MATHEMATICS / Differential Equations / General bisacsh Differential equations / Asymptotic theory fast Differential equations, Nonlinear fast Perturbation (Mathematics) fast Differential equations, Nonlinear Perturbation (Mathematics) Differential equations Asymptotic theory Störungstheorie (DE-588)4128420-3 gnd Differentialgleichung (DE-588)4012249-9 gnd |
topic_facet | MATHEMATICS / Differential Equations / General Differential equations / Asymptotic theory Differential equations, Nonlinear Perturbation (Mathematics) Differential equations Asymptotic theory Störungstheorie Differentialgleichung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=426355 |
work_keys_str_mv | AT samojlenkoanatolijm qualitativeandasymptoticanalysisofdifferentialequationswithrandomperturbations AT stanzhytskyioleksandr qualitativeandasymptoticanalysisofdifferentialequationswithrandomperturbations |