Bursting: the genesis of rhythm in the nervous system
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Hackensack, NJ
World Scientific Pub.
c2005
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index Cover -- PREFACE -- CONTENTS -- PART I: BURSTING AT THE SINGLE CELL LEVEL -- CHAPTER 1 THE DEVELOPMENT OF THE HINDMARSH-ROSE MODEL FOR BURSTING -- 1.1. Introduction -- 1.2. Tail Current Reversal -- 1.3. The 1982 Model -- 1.4. The 1984 Model -- 1.5. Subthreshold Oscillations -- 1.6. A Bifurcation Theorem -- References -- CHAPTER 2 NEGATIVE CALCIUM FEEDBACK: THE ROAD FROM CHAY-KEIZER -- 2.1. Introduction -- 2.2. Before the Beginning -- 2.3. The Beginning -- 2.4. The Demise of K(Ca) -- 2.5. The Return of K(Ca): Help from the Endoplasmic Reticulum -- 2.6. Further Modifications to the Model -- 2.7. Discussion -- Acknowledgements -- References -- CHAPTER 3 AUTOREGULATION OF BURSTING OF AVP NEURONS OF THE RAT HYPOTHALAMUS -- 3.1. Introduction -- 3.2. Electrical Properties of AVP Cells -- 3.3. Mathematical Model -- 3.4. Firing Patterns -- 3.5. Burst Structure -- 3.6. The Role of Calcium -- 3.7. The Action of Dynorphin -- 3.8. The Bursting Mechanism -- 3.9. The Dynamics of Dynorphin -- - 3.10. Analysis of Bursting -- 3.11. Discussion -- Acknowledgements -- References -- CHAPTER 4 BIFURCATIONS IN THE FAST DYNAMICS OF NEURONS: IMPLICATIONS FOR BURSTING -- 4.1. Introduction -- 4.2. A TWO Dimensional Model of Spiking Sodium Currents -- 4.3. Fast-Slow Analysis of Bursting -- 4.4. Discussion -- References -- CHAPTER 5 BURSTING IN 2-COMPARTMENT NEURONS: A CASE STUDY OF THE PINSKY-RINZEL MODEL -- 5.1. Introduction -- 5.2. The Pinsky-Rinzel Model -- 5.3. Dynamics of the Pinsky-Rinzel Model -- 5.4. Morris-Lecar Two-Compartment Models -- 5.5. Discussion -- Acknowledgments -- References -- CHAPTER 6 GHOSTBURSTING: THE ROLE OF ACTIVE DENDRITES IN ELECTROSENSORY PROCESSING -- 6.1. Introduction -- 6.2. Bursting Mechanism -- 6.3. Ghostburster Dynamics -- 6.4. Unique Features -- 6.5. Extensions and Other Work -- 6.6. Parallel Processing with Bursts and Isolated Spikes -- 6.7. Summary -- Acknowledgements -- References -- PART II: BURSTING AT THE NETWORK LEVEL -- - CHAPTER 7 ANALYSIS OF CIRCUITS CONTAINING BURSTING NEURONS USING PHASE RESETTING CURVES -- 7.1. Introduction -- 7.2. Stability Analysis for Two Coupled Oscillators -- 7.3. Analysis of a Circuit of Two Model Neurons -- 7.4. Stability Analysis for a Three Neuron Ring Circuit -- 7.5. Analysis of a Circuit of Three Model Neurons -- 7.6. Analysis of a Two Neuron Hybrid Circuit -- 7.7. Effect of Changing Burst Durations in the Two Neuron Circuit -- 7.8. Phenomenology of Resetting in a Biological Bursting Neuron -- 7.9. Significance -- Acknowledgments -- References -- CHAPTER 8 BURSTING IN COUPLED CELL SYSTEMS -- 8.1. Introduction -- 8.2. Unfolding Theory and Bursting in Fast-Slow Systems -- 8.3. Bursting in Two Coupled Cells -- 8.4. Za-Equivariant Bifurcations -- 8.5. Pitchfork Bifurcation -- 8.6. Hopf / Hopf Mode Interactions -- 8.7. Takens-Bogdanov Bifurcation with 22 Symmetry -- 8.8. Conclusion -- Acknowledgments -- References -- - CHAPTER 9 MODULATORY EFFECTS OF COUPLING ON BURSTING MAPS -- 9.1. Introduction -- 9.2. Examples of Bursting Maps -- 9.3. Effects of Coupling -- 9.4. Rulkov's First Bursting Map: Explaining the Effect of Coupling -- 9.5. Discussion -- Acknowledgments -- References -- CHAPTER 10 BEYOND SYNCHRONIZATION: MODULAT. Neurons in the brain communicate with each other by transmitting sequences of electrical spikes or action potentials. One of the major challenges in neuroscience is to understand the basic physiological mechanisms underlying the complex spatiotemporal patterns of spiking activity observed during normal brain functioning, and to determine the origins of pathological dynamical states, such as epileptic seizures and Parkinsonian tremors. A second major challenge is to understand how the patterns of spiking activity provide a substrate for the encoding and transmission of information, that is, how do neurons compute with spikes? It is likely that an important element of both the dynamical and computational properties of neurons is that they can exhibit bursting, which is a relatively slow rhythmic alternation between an active phase of rapid spiking and a quiescent phase without spiking. This book provides a detailed overview of the current state-of-the-art in the mathematical and computational modelling of bursting, with contributions from many of the leading researchers in the field |
Beschreibung: | 1 Online-Ressource (xvi, 401 p.) |
ISBN: | 1281899208 9781281899200 9789812565068 9789812703231 981256506X 9812703233 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043116128 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2005 |||| o||u| ||||||eng d | ||
020 | |a 1281899208 |9 1-281-89920-8 | ||
020 | |a 9781281899200 |9 978-1-281-89920-0 | ||
020 | |a 9789812565068 |9 978-981-256-506-8 | ||
020 | |a 9789812703231 |c electronic bk. |9 978-981-270-323-1 | ||
020 | |a 981256506X |9 981-256-506-X | ||
020 | |a 9812703233 |c electronic bk. |9 981-270-323-3 | ||
035 | |a (OCoLC)243614329 | ||
035 | |a (DE-599)BVBBV043116128 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 612.8/1 |2 22 | |
245 | 1 | 0 | |a Bursting |b the genesis of rhythm in the nervous system |c editors, Stephen Coombes, Paul C. Bressloff |
264 | 1 | |a Hackensack, NJ |b World Scientific Pub. |c c2005 | |
300 | |a 1 Online-Ressource (xvi, 401 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Cover -- PREFACE -- CONTENTS -- PART I: BURSTING AT THE SINGLE CELL LEVEL -- CHAPTER 1 THE DEVELOPMENT OF THE HINDMARSH-ROSE MODEL FOR BURSTING -- 1.1. Introduction -- 1.2. Tail Current Reversal -- 1.3. The 1982 Model -- 1.4. The 1984 Model -- 1.5. Subthreshold Oscillations -- 1.6. A Bifurcation Theorem -- References -- CHAPTER 2 NEGATIVE CALCIUM FEEDBACK: THE ROAD FROM CHAY-KEIZER -- 2.1. Introduction -- 2.2. Before the Beginning -- 2.3. The Beginning -- 2.4. The Demise of K(Ca) -- 2.5. The Return of K(Ca): Help from the Endoplasmic Reticulum -- 2.6. Further Modifications to the Model -- 2.7. Discussion -- Acknowledgements -- References -- CHAPTER 3 AUTOREGULATION OF BURSTING OF AVP NEURONS OF THE RAT HYPOTHALAMUS -- 3.1. Introduction -- 3.2. Electrical Properties of AVP Cells -- 3.3. Mathematical Model -- 3.4. Firing Patterns -- 3.5. Burst Structure -- 3.6. The Role of Calcium -- 3.7. The Action of Dynorphin -- 3.8. The Bursting Mechanism -- 3.9. The Dynamics of Dynorphin -- | ||
500 | |a - 3.10. Analysis of Bursting -- 3.11. Discussion -- Acknowledgements -- References -- CHAPTER 4 BIFURCATIONS IN THE FAST DYNAMICS OF NEURONS: IMPLICATIONS FOR BURSTING -- 4.1. Introduction -- 4.2. A TWO Dimensional Model of Spiking Sodium Currents -- 4.3. Fast-Slow Analysis of Bursting -- 4.4. Discussion -- References -- CHAPTER 5 BURSTING IN 2-COMPARTMENT NEURONS: A CASE STUDY OF THE PINSKY-RINZEL MODEL -- 5.1. Introduction -- 5.2. The Pinsky-Rinzel Model -- 5.3. Dynamics of the Pinsky-Rinzel Model -- 5.4. Morris-Lecar Two-Compartment Models -- 5.5. Discussion -- Acknowledgments -- References -- CHAPTER 6 GHOSTBURSTING: THE ROLE OF ACTIVE DENDRITES IN ELECTROSENSORY PROCESSING -- 6.1. Introduction -- 6.2. Bursting Mechanism -- 6.3. Ghostburster Dynamics -- 6.4. Unique Features -- 6.5. Extensions and Other Work -- 6.6. Parallel Processing with Bursts and Isolated Spikes -- 6.7. Summary -- Acknowledgements -- References -- PART II: BURSTING AT THE NETWORK LEVEL -- | ||
500 | |a - CHAPTER 7 ANALYSIS OF CIRCUITS CONTAINING BURSTING NEURONS USING PHASE RESETTING CURVES -- 7.1. Introduction -- 7.2. Stability Analysis for Two Coupled Oscillators -- 7.3. Analysis of a Circuit of Two Model Neurons -- 7.4. Stability Analysis for a Three Neuron Ring Circuit -- 7.5. Analysis of a Circuit of Three Model Neurons -- 7.6. Analysis of a Two Neuron Hybrid Circuit -- 7.7. Effect of Changing Burst Durations in the Two Neuron Circuit -- 7.8. Phenomenology of Resetting in a Biological Bursting Neuron -- 7.9. Significance -- Acknowledgments -- References -- CHAPTER 8 BURSTING IN COUPLED CELL SYSTEMS -- 8.1. Introduction -- 8.2. Unfolding Theory and Bursting in Fast-Slow Systems -- 8.3. Bursting in Two Coupled Cells -- 8.4. Za-Equivariant Bifurcations -- 8.5. Pitchfork Bifurcation -- 8.6. Hopf / Hopf Mode Interactions -- 8.7. Takens-Bogdanov Bifurcation with 22 Symmetry -- 8.8. Conclusion -- Acknowledgments -- References -- | ||
500 | |a - CHAPTER 9 MODULATORY EFFECTS OF COUPLING ON BURSTING MAPS -- 9.1. Introduction -- 9.2. Examples of Bursting Maps -- 9.3. Effects of Coupling -- 9.4. Rulkov's First Bursting Map: Explaining the Effect of Coupling -- 9.5. Discussion -- Acknowledgments -- References -- CHAPTER 10 BEYOND SYNCHRONIZATION: MODULAT. | ||
500 | |a Neurons in the brain communicate with each other by transmitting sequences of electrical spikes or action potentials. One of the major challenges in neuroscience is to understand the basic physiological mechanisms underlying the complex spatiotemporal patterns of spiking activity observed during normal brain functioning, and to determine the origins of pathological dynamical states, such as epileptic seizures and Parkinsonian tremors. A second major challenge is to understand how the patterns of spiking activity provide a substrate for the encoding and transmission of information, that is, how do neurons compute with spikes? It is likely that an important element of both the dynamical and computational properties of neurons is that they can exhibit bursting, which is a relatively slow rhythmic alternation between an active phase of rapid spiking and a quiescent phase without spiking. This book provides a detailed overview of the current state-of-the-art in the mathematical and computational modelling of bursting, with contributions from many of the leading researchers in the field | ||
650 | 7 | |a MEDICAL / Neuroscience |2 bisacsh | |
650 | 7 | |a PSYCHOLOGY / Neuropsychology |2 bisacsh | |
650 | 7 | |a Neural transmission |2 fast | |
650 | 7 | |a Sensory neurons |2 fast | |
650 | 4 | |a Synaptic Transmission / physiology | |
650 | 4 | |a Neurons, Afferent / physiology | |
650 | 4 | |a Medizin | |
650 | 4 | |a Neural transmission | |
650 | 4 | |a Sensory neurons | |
650 | 0 | 7 | |a Aktionspotenzial |0 (DE-588)4141745-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biorhythmus |0 (DE-588)4006896-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Aktionspotenzial |0 (DE-588)4141745-8 |D s |
689 | 0 | 1 | |a Biorhythmus |0 (DE-588)4006896-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Coombes, Stephen |e Sonstige |4 oth | |
700 | 1 | |a Bressloff, Paul C. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=174566 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028540319 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=174566 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=174566 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175540941225984 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV043116128 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)243614329 (DE-599)BVBBV043116128 |
dewey-full | 612.8/1 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 612 - Human physiology |
dewey-raw | 612.8/1 |
dewey-search | 612.8/1 |
dewey-sort | 3612.8 11 |
dewey-tens | 610 - Medicine and health |
discipline | Medizin |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06807nmm a2200637zc 4500</leader><controlfield tag="001">BV043116128</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281899208</subfield><subfield code="9">1-281-89920-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281899200</subfield><subfield code="9">978-1-281-89920-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812565068</subfield><subfield code="9">978-981-256-506-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812703231</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-270-323-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981256506X</subfield><subfield code="9">981-256-506-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812703233</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-270-323-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)243614329</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043116128</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">612.8/1</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bursting</subfield><subfield code="b">the genesis of rhythm in the nervous system</subfield><subfield code="c">editors, Stephen Coombes, Paul C. Bressloff</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hackensack, NJ</subfield><subfield code="b">World Scientific Pub.</subfield><subfield code="c">c2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 401 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover -- PREFACE -- CONTENTS -- PART I: BURSTING AT THE SINGLE CELL LEVEL -- CHAPTER 1 THE DEVELOPMENT OF THE HINDMARSH-ROSE MODEL FOR BURSTING -- 1.1. Introduction -- 1.2. Tail Current Reversal -- 1.3. The 1982 Model -- 1.4. The 1984 Model -- 1.5. Subthreshold Oscillations -- 1.6. A Bifurcation Theorem -- References -- CHAPTER 2 NEGATIVE CALCIUM FEEDBACK: THE ROAD FROM CHAY-KEIZER -- 2.1. Introduction -- 2.2. Before the Beginning -- 2.3. The Beginning -- 2.4. The Demise of K(Ca) -- 2.5. The Return of K(Ca): Help from the Endoplasmic Reticulum -- 2.6. Further Modifications to the Model -- 2.7. Discussion -- Acknowledgements -- References -- CHAPTER 3 AUTOREGULATION OF BURSTING OF AVP NEURONS OF THE RAT HYPOTHALAMUS -- 3.1. Introduction -- 3.2. Electrical Properties of AVP Cells -- 3.3. Mathematical Model -- 3.4. Firing Patterns -- 3.5. Burst Structure -- 3.6. The Role of Calcium -- 3.7. The Action of Dynorphin -- 3.8. The Bursting Mechanism -- 3.9. The Dynamics of Dynorphin -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 3.10. Analysis of Bursting -- 3.11. Discussion -- Acknowledgements -- References -- CHAPTER 4 BIFURCATIONS IN THE FAST DYNAMICS OF NEURONS: IMPLICATIONS FOR BURSTING -- 4.1. Introduction -- 4.2. A TWO Dimensional Model of Spiking Sodium Currents -- 4.3. Fast-Slow Analysis of Bursting -- 4.4. Discussion -- References -- CHAPTER 5 BURSTING IN 2-COMPARTMENT NEURONS: A CASE STUDY OF THE PINSKY-RINZEL MODEL -- 5.1. Introduction -- 5.2. The Pinsky-Rinzel Model -- 5.3. Dynamics of the Pinsky-Rinzel Model -- 5.4. Morris-Lecar Two-Compartment Models -- 5.5. Discussion -- Acknowledgments -- References -- CHAPTER 6 GHOSTBURSTING: THE ROLE OF ACTIVE DENDRITES IN ELECTROSENSORY PROCESSING -- 6.1. Introduction -- 6.2. Bursting Mechanism -- 6.3. Ghostburster Dynamics -- 6.4. Unique Features -- 6.5. Extensions and Other Work -- 6.6. Parallel Processing with Bursts and Isolated Spikes -- 6.7. Summary -- Acknowledgements -- References -- PART II: BURSTING AT THE NETWORK LEVEL -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - CHAPTER 7 ANALYSIS OF CIRCUITS CONTAINING BURSTING NEURONS USING PHASE RESETTING CURVES -- 7.1. Introduction -- 7.2. Stability Analysis for Two Coupled Oscillators -- 7.3. Analysis of a Circuit of Two Model Neurons -- 7.4. Stability Analysis for a Three Neuron Ring Circuit -- 7.5. Analysis of a Circuit of Three Model Neurons -- 7.6. Analysis of a Two Neuron Hybrid Circuit -- 7.7. Effect of Changing Burst Durations in the Two Neuron Circuit -- 7.8. Phenomenology of Resetting in a Biological Bursting Neuron -- 7.9. Significance -- Acknowledgments -- References -- CHAPTER 8 BURSTING IN COUPLED CELL SYSTEMS -- 8.1. Introduction -- 8.2. Unfolding Theory and Bursting in Fast-Slow Systems -- 8.3. Bursting in Two Coupled Cells -- 8.4. Za-Equivariant Bifurcations -- 8.5. Pitchfork Bifurcation -- 8.6. Hopf / Hopf Mode Interactions -- 8.7. Takens-Bogdanov Bifurcation with 22 Symmetry -- 8.8. Conclusion -- Acknowledgments -- References -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - CHAPTER 9 MODULATORY EFFECTS OF COUPLING ON BURSTING MAPS -- 9.1. Introduction -- 9.2. Examples of Bursting Maps -- 9.3. Effects of Coupling -- 9.4. Rulkov's First Bursting Map: Explaining the Effect of Coupling -- 9.5. Discussion -- Acknowledgments -- References -- CHAPTER 10 BEYOND SYNCHRONIZATION: MODULAT.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Neurons in the brain communicate with each other by transmitting sequences of electrical spikes or action potentials. One of the major challenges in neuroscience is to understand the basic physiological mechanisms underlying the complex spatiotemporal patterns of spiking activity observed during normal brain functioning, and to determine the origins of pathological dynamical states, such as epileptic seizures and Parkinsonian tremors. A second major challenge is to understand how the patterns of spiking activity provide a substrate for the encoding and transmission of information, that is, how do neurons compute with spikes? It is likely that an important element of both the dynamical and computational properties of neurons is that they can exhibit bursting, which is a relatively slow rhythmic alternation between an active phase of rapid spiking and a quiescent phase without spiking. This book provides a detailed overview of the current state-of-the-art in the mathematical and computational modelling of bursting, with contributions from many of the leading researchers in the field</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MEDICAL / Neuroscience</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PSYCHOLOGY / Neuropsychology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural transmission</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sensory neurons</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synaptic Transmission / physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neurons, Afferent / physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medizin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural transmission</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensory neurons</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aktionspotenzial</subfield><subfield code="0">(DE-588)4141745-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biorhythmus</subfield><subfield code="0">(DE-588)4006896-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Aktionspotenzial</subfield><subfield code="0">(DE-588)4141745-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Biorhythmus</subfield><subfield code="0">(DE-588)4006896-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coombes, Stephen</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bressloff, Paul C.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=174566</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028540319</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=174566</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=174566</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043116128 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:55Z |
institution | BVB |
isbn | 1281899208 9781281899200 9789812565068 9789812703231 981256506X 9812703233 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028540319 |
oclc_num | 243614329 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xvi, 401 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | World Scientific Pub. |
record_format | marc |
spelling | Bursting the genesis of rhythm in the nervous system editors, Stephen Coombes, Paul C. Bressloff Hackensack, NJ World Scientific Pub. c2005 1 Online-Ressource (xvi, 401 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index Cover -- PREFACE -- CONTENTS -- PART I: BURSTING AT THE SINGLE CELL LEVEL -- CHAPTER 1 THE DEVELOPMENT OF THE HINDMARSH-ROSE MODEL FOR BURSTING -- 1.1. Introduction -- 1.2. Tail Current Reversal -- 1.3. The 1982 Model -- 1.4. The 1984 Model -- 1.5. Subthreshold Oscillations -- 1.6. A Bifurcation Theorem -- References -- CHAPTER 2 NEGATIVE CALCIUM FEEDBACK: THE ROAD FROM CHAY-KEIZER -- 2.1. Introduction -- 2.2. Before the Beginning -- 2.3. The Beginning -- 2.4. The Demise of K(Ca) -- 2.5. The Return of K(Ca): Help from the Endoplasmic Reticulum -- 2.6. Further Modifications to the Model -- 2.7. Discussion -- Acknowledgements -- References -- CHAPTER 3 AUTOREGULATION OF BURSTING OF AVP NEURONS OF THE RAT HYPOTHALAMUS -- 3.1. Introduction -- 3.2. Electrical Properties of AVP Cells -- 3.3. Mathematical Model -- 3.4. Firing Patterns -- 3.5. Burst Structure -- 3.6. The Role of Calcium -- 3.7. The Action of Dynorphin -- 3.8. The Bursting Mechanism -- 3.9. The Dynamics of Dynorphin -- - 3.10. Analysis of Bursting -- 3.11. Discussion -- Acknowledgements -- References -- CHAPTER 4 BIFURCATIONS IN THE FAST DYNAMICS OF NEURONS: IMPLICATIONS FOR BURSTING -- 4.1. Introduction -- 4.2. A TWO Dimensional Model of Spiking Sodium Currents -- 4.3. Fast-Slow Analysis of Bursting -- 4.4. Discussion -- References -- CHAPTER 5 BURSTING IN 2-COMPARTMENT NEURONS: A CASE STUDY OF THE PINSKY-RINZEL MODEL -- 5.1. Introduction -- 5.2. The Pinsky-Rinzel Model -- 5.3. Dynamics of the Pinsky-Rinzel Model -- 5.4. Morris-Lecar Two-Compartment Models -- 5.5. Discussion -- Acknowledgments -- References -- CHAPTER 6 GHOSTBURSTING: THE ROLE OF ACTIVE DENDRITES IN ELECTROSENSORY PROCESSING -- 6.1. Introduction -- 6.2. Bursting Mechanism -- 6.3. Ghostburster Dynamics -- 6.4. Unique Features -- 6.5. Extensions and Other Work -- 6.6. Parallel Processing with Bursts and Isolated Spikes -- 6.7. Summary -- Acknowledgements -- References -- PART II: BURSTING AT THE NETWORK LEVEL -- - CHAPTER 7 ANALYSIS OF CIRCUITS CONTAINING BURSTING NEURONS USING PHASE RESETTING CURVES -- 7.1. Introduction -- 7.2. Stability Analysis for Two Coupled Oscillators -- 7.3. Analysis of a Circuit of Two Model Neurons -- 7.4. Stability Analysis for a Three Neuron Ring Circuit -- 7.5. Analysis of a Circuit of Three Model Neurons -- 7.6. Analysis of a Two Neuron Hybrid Circuit -- 7.7. Effect of Changing Burst Durations in the Two Neuron Circuit -- 7.8. Phenomenology of Resetting in a Biological Bursting Neuron -- 7.9. Significance -- Acknowledgments -- References -- CHAPTER 8 BURSTING IN COUPLED CELL SYSTEMS -- 8.1. Introduction -- 8.2. Unfolding Theory and Bursting in Fast-Slow Systems -- 8.3. Bursting in Two Coupled Cells -- 8.4. Za-Equivariant Bifurcations -- 8.5. Pitchfork Bifurcation -- 8.6. Hopf / Hopf Mode Interactions -- 8.7. Takens-Bogdanov Bifurcation with 22 Symmetry -- 8.8. Conclusion -- Acknowledgments -- References -- - CHAPTER 9 MODULATORY EFFECTS OF COUPLING ON BURSTING MAPS -- 9.1. Introduction -- 9.2. Examples of Bursting Maps -- 9.3. Effects of Coupling -- 9.4. Rulkov's First Bursting Map: Explaining the Effect of Coupling -- 9.5. Discussion -- Acknowledgments -- References -- CHAPTER 10 BEYOND SYNCHRONIZATION: MODULAT. Neurons in the brain communicate with each other by transmitting sequences of electrical spikes or action potentials. One of the major challenges in neuroscience is to understand the basic physiological mechanisms underlying the complex spatiotemporal patterns of spiking activity observed during normal brain functioning, and to determine the origins of pathological dynamical states, such as epileptic seizures and Parkinsonian tremors. A second major challenge is to understand how the patterns of spiking activity provide a substrate for the encoding and transmission of information, that is, how do neurons compute with spikes? It is likely that an important element of both the dynamical and computational properties of neurons is that they can exhibit bursting, which is a relatively slow rhythmic alternation between an active phase of rapid spiking and a quiescent phase without spiking. This book provides a detailed overview of the current state-of-the-art in the mathematical and computational modelling of bursting, with contributions from many of the leading researchers in the field MEDICAL / Neuroscience bisacsh PSYCHOLOGY / Neuropsychology bisacsh Neural transmission fast Sensory neurons fast Synaptic Transmission / physiology Neurons, Afferent / physiology Medizin Neural transmission Sensory neurons Aktionspotenzial (DE-588)4141745-8 gnd rswk-swf Biorhythmus (DE-588)4006896-1 gnd rswk-swf Aktionspotenzial (DE-588)4141745-8 s Biorhythmus (DE-588)4006896-1 s 1\p DE-604 Coombes, Stephen Sonstige oth Bressloff, Paul C. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=174566 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bursting the genesis of rhythm in the nervous system MEDICAL / Neuroscience bisacsh PSYCHOLOGY / Neuropsychology bisacsh Neural transmission fast Sensory neurons fast Synaptic Transmission / physiology Neurons, Afferent / physiology Medizin Neural transmission Sensory neurons Aktionspotenzial (DE-588)4141745-8 gnd Biorhythmus (DE-588)4006896-1 gnd |
subject_GND | (DE-588)4141745-8 (DE-588)4006896-1 |
title | Bursting the genesis of rhythm in the nervous system |
title_auth | Bursting the genesis of rhythm in the nervous system |
title_exact_search | Bursting the genesis of rhythm in the nervous system |
title_full | Bursting the genesis of rhythm in the nervous system editors, Stephen Coombes, Paul C. Bressloff |
title_fullStr | Bursting the genesis of rhythm in the nervous system editors, Stephen Coombes, Paul C. Bressloff |
title_full_unstemmed | Bursting the genesis of rhythm in the nervous system editors, Stephen Coombes, Paul C. Bressloff |
title_short | Bursting |
title_sort | bursting the genesis of rhythm in the nervous system |
title_sub | the genesis of rhythm in the nervous system |
topic | MEDICAL / Neuroscience bisacsh PSYCHOLOGY / Neuropsychology bisacsh Neural transmission fast Sensory neurons fast Synaptic Transmission / physiology Neurons, Afferent / physiology Medizin Neural transmission Sensory neurons Aktionspotenzial (DE-588)4141745-8 gnd Biorhythmus (DE-588)4006896-1 gnd |
topic_facet | MEDICAL / Neuroscience PSYCHOLOGY / Neuropsychology Neural transmission Sensory neurons Synaptic Transmission / physiology Neurons, Afferent / physiology Medizin Aktionspotenzial Biorhythmus |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=174566 |
work_keys_str_mv | AT coombesstephen burstingthegenesisofrhythminthenervoussystem AT bressloffpaulc burstingthegenesisofrhythminthenervoussystem |