Numerical Continuum Mechanics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
De Gruyter
2012
|
Schriftenreihe: | De Gruyter studies in mathematical physics
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | 1.12.3 Spatial description Preface; I Basic equations of continuum mechanics; 1 Basic equations of continuous media; 1.1 Methods of describing motion of continuous media; 1.1.1 Coordinate systems and methods of describing motion of continuous media; 1.1.2 Eulerian description; 1.1.3 Lagrangian description; 1.1.4 Differentiation of bases; 1.1.5 Description of deformations and rates of deformation of a continuous medium; 1.2 Conservation laws. Integral and differential forms; 1.2.1 Integral form of conservation laws; 1.2.2 Differential form of conservation laws; 1.2.3 Conservation laws at solution discontinuities 1.2.4 Conclusions1.3 Thermodynamics; 1.3.1 First law of thermodynamics; 1.3.2 Second law of thermodynamics; 1.3.3 Conclusions; 1.4 Constitutive equations; 1.4.1 General form of constitutive equations. Internal variables; 1.4.2 Equations of viscous compressible heat-conducting gases; 1.4.3 Thermoelastic isotropic media; 1.4.4 Combined media; 1.4.5 Rigid-plastic media with translationally isotropic hardening; 1.4.6 Elastoplastic model; 1.5 Theory of plastic flow. Theory of internal variables; 1.5.1 Statement of the problem. Equations of an elastoplastic medium 1.5.2 Equations of an elastoviscoplastic medium1.6 Experimental determination of constitutive relations under dynamic loading; 1.6.1 Experimental results and experimentally obtained constitutive equations; 1.6.2 Substantiation of elastoviscoplastic equations on the basis of dislocation theory; 1.7 Principle of virtual displacements. Weak solutions to equations of motion; 1.7.1 Principles of virtual displacements and velocities; 1.7.2 Weak formulation of the problem of continuum mechanics; 1.8 Variational principles of continuum mechanics; 1.8.1 Lagrange's variational principle 1.8.2 Hamilton's variational principle1.8.3 Castigliano's variational principle; 1.8.4 General variational principle for solving continuum mechanics problems; 1.8.5 Estimation of solution error; 1.9 Kinematics of continuous media. Finite deformations; 1.9.1 Description of the motion of solids at large deformations; 1.9.2 Motion: deformation and rotation; 1.9.3 Strain measure. Green-Lagrange and Euler-Almansi strain tensors; 1.9.4 Deformation of area and volume elements; 1.9.5 Transformations: initial, reference, and intermediate configurations 1.9.6 Differentiation of tensors. Rate of deformation measures1.10 Stress measures; 1.10.1 Current configuration. Cauchy stress tensor; 1.10.2 Current and initial configurations. The first and second Piola-Kirchhoff stress tensors; 1.10.3 Measures of the rate of change of stress tensors; 1.11 Variational principles for finite deformations; 1.11.1 Principle of virtual work; 1.11.2 Statement of the principle in increments; 1.12 Constitutive equations of plasticity under finite deformations; 1.12.1 Multiplicative decomposition. Deformation gradients; 1.12.2 Material description This work focuses on computational methods in continuum thermomechanics. The text is based on the author's lectures, which ensures a didactical and coherent buildup. The main emphasis is put on the presentation of ideas and qualitative considerations, illustrated by specific examples and applications. Conditions and explanations that are essential for the practical application of methods are discussed thoroughly |
Beschreibung: | 1 Online-Ressource (447 pages) |
ISBN: | 3110273381 9783110273380 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043113552 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2012 |||| o||u| ||||||eng d | ||
020 | |a 3110273381 |c electronic bk. |9 3-11-027338-1 | ||
020 | |a 9783110273380 |c electronic bk. |9 978-3-11-027338-0 | ||
035 | |a (OCoLC)829462187 | ||
035 | |a (DE-599)BVBBV043113552 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 531.01515 | |
082 | 0 | |a 531.01/515 | |
100 | 1 | |a Kukudzhanov, Vladimir N. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Numerical Continuum Mechanics |
264 | 1 | |a Berlin |b De Gruyter |c 2012 | |
300 | |a 1 Online-Ressource (447 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter studies in mathematical physics | |
500 | |a 1.12.3 Spatial description | ||
500 | |a Preface; I Basic equations of continuum mechanics; 1 Basic equations of continuous media; 1.1 Methods of describing motion of continuous media; 1.1.1 Coordinate systems and methods of describing motion of continuous media; 1.1.2 Eulerian description; 1.1.3 Lagrangian description; 1.1.4 Differentiation of bases; 1.1.5 Description of deformations and rates of deformation of a continuous medium; 1.2 Conservation laws. Integral and differential forms; 1.2.1 Integral form of conservation laws; 1.2.2 Differential form of conservation laws; 1.2.3 Conservation laws at solution discontinuities | ||
500 | |a 1.2.4 Conclusions1.3 Thermodynamics; 1.3.1 First law of thermodynamics; 1.3.2 Second law of thermodynamics; 1.3.3 Conclusions; 1.4 Constitutive equations; 1.4.1 General form of constitutive equations. Internal variables; 1.4.2 Equations of viscous compressible heat-conducting gases; 1.4.3 Thermoelastic isotropic media; 1.4.4 Combined media; 1.4.5 Rigid-plastic media with translationally isotropic hardening; 1.4.6 Elastoplastic model; 1.5 Theory of plastic flow. Theory of internal variables; 1.5.1 Statement of the problem. Equations of an elastoplastic medium | ||
500 | |a 1.5.2 Equations of an elastoviscoplastic medium1.6 Experimental determination of constitutive relations under dynamic loading; 1.6.1 Experimental results and experimentally obtained constitutive equations; 1.6.2 Substantiation of elastoviscoplastic equations on the basis of dislocation theory; 1.7 Principle of virtual displacements. Weak solutions to equations of motion; 1.7.1 Principles of virtual displacements and velocities; 1.7.2 Weak formulation of the problem of continuum mechanics; 1.8 Variational principles of continuum mechanics; 1.8.1 Lagrange's variational principle | ||
500 | |a 1.8.2 Hamilton's variational principle1.8.3 Castigliano's variational principle; 1.8.4 General variational principle for solving continuum mechanics problems; 1.8.5 Estimation of solution error; 1.9 Kinematics of continuous media. Finite deformations; 1.9.1 Description of the motion of solids at large deformations; 1.9.2 Motion: deformation and rotation; 1.9.3 Strain measure. Green-Lagrange and Euler-Almansi strain tensors; 1.9.4 Deformation of area and volume elements; 1.9.5 Transformations: initial, reference, and intermediate configurations | ||
500 | |a 1.9.6 Differentiation of tensors. Rate of deformation measures1.10 Stress measures; 1.10.1 Current configuration. Cauchy stress tensor; 1.10.2 Current and initial configurations. The first and second Piola-Kirchhoff stress tensors; 1.10.3 Measures of the rate of change of stress tensors; 1.11 Variational principles for finite deformations; 1.11.1 Principle of virtual work; 1.11.2 Statement of the principle in increments; 1.12 Constitutive equations of plasticity under finite deformations; 1.12.1 Multiplicative decomposition. Deformation gradients; 1.12.2 Material description | ||
500 | |a This work focuses on computational methods in continuum thermomechanics. The text is based on the author's lectures, which ensures a didactical and coherent buildup. The main emphasis is put on the presentation of ideas and qualitative considerations, illustrated by specific examples and applications. Conditions and explanations that are essential for the practical application of methods are discussed thoroughly | ||
650 | 7 | |a SCIENCE / Mechanics / General |2 bisacsh | |
650 | 7 | |a SCIENCE / Mechanics / Solids |2 bisacsh | |
650 | 7 | |a Continuum mechanics |2 fast | |
650 | 4 | |a Continuum mechanics | |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Zhurov, Alexei |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=543966 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028537742 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=543966 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=543966 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175535875555328 |
---|---|
any_adam_object | |
author | Kukudzhanov, Vladimir N. |
author_facet | Kukudzhanov, Vladimir N. |
author_role | aut |
author_sort | Kukudzhanov, Vladimir N. |
author_variant | v n k vn vnk |
building | Verbundindex |
bvnumber | BV043113552 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)829462187 (DE-599)BVBBV043113552 |
dewey-full | 531.01515 531.01/515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531.01515 531.01/515 |
dewey-search | 531.01515 531.01/515 |
dewey-sort | 3531.01515 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05412nmm a2200565zc 4500</leader><controlfield tag="001">BV043113552</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110273381</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">3-11-027338-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110273380</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-3-11-027338-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)829462187</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043113552</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531.01515</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531.01/515</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kukudzhanov, Vladimir N.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Continuum Mechanics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (447 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter studies in mathematical physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1.12.3 Spatial description</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface; I Basic equations of continuum mechanics; 1 Basic equations of continuous media; 1.1 Methods of describing motion of continuous media; 1.1.1 Coordinate systems and methods of describing motion of continuous media; 1.1.2 Eulerian description; 1.1.3 Lagrangian description; 1.1.4 Differentiation of bases; 1.1.5 Description of deformations and rates of deformation of a continuous medium; 1.2 Conservation laws. Integral and differential forms; 1.2.1 Integral form of conservation laws; 1.2.2 Differential form of conservation laws; 1.2.3 Conservation laws at solution discontinuities</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1.2.4 Conclusions1.3 Thermodynamics; 1.3.1 First law of thermodynamics; 1.3.2 Second law of thermodynamics; 1.3.3 Conclusions; 1.4 Constitutive equations; 1.4.1 General form of constitutive equations. Internal variables; 1.4.2 Equations of viscous compressible heat-conducting gases; 1.4.3 Thermoelastic isotropic media; 1.4.4 Combined media; 1.4.5 Rigid-plastic media with translationally isotropic hardening; 1.4.6 Elastoplastic model; 1.5 Theory of plastic flow. Theory of internal variables; 1.5.1 Statement of the problem. Equations of an elastoplastic medium</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1.5.2 Equations of an elastoviscoplastic medium1.6 Experimental determination of constitutive relations under dynamic loading; 1.6.1 Experimental results and experimentally obtained constitutive equations; 1.6.2 Substantiation of elastoviscoplastic equations on the basis of dislocation theory; 1.7 Principle of virtual displacements. Weak solutions to equations of motion; 1.7.1 Principles of virtual displacements and velocities; 1.7.2 Weak formulation of the problem of continuum mechanics; 1.8 Variational principles of continuum mechanics; 1.8.1 Lagrange's variational principle</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1.8.2 Hamilton's variational principle1.8.3 Castigliano's variational principle; 1.8.4 General variational principle for solving continuum mechanics problems; 1.8.5 Estimation of solution error; 1.9 Kinematics of continuous media. Finite deformations; 1.9.1 Description of the motion of solids at large deformations; 1.9.2 Motion: deformation and rotation; 1.9.3 Strain measure. Green-Lagrange and Euler-Almansi strain tensors; 1.9.4 Deformation of area and volume elements; 1.9.5 Transformations: initial, reference, and intermediate configurations</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1.9.6 Differentiation of tensors. Rate of deformation measures1.10 Stress measures; 1.10.1 Current configuration. Cauchy stress tensor; 1.10.2 Current and initial configurations. The first and second Piola-Kirchhoff stress tensors; 1.10.3 Measures of the rate of change of stress tensors; 1.11 Variational principles for finite deformations; 1.11.1 Principle of virtual work; 1.11.2 Statement of the principle in increments; 1.12 Constitutive equations of plasticity under finite deformations; 1.12.1 Multiplicative decomposition. Deformation gradients; 1.12.2 Material description</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This work focuses on computational methods in continuum thermomechanics. The text is based on the author's lectures, which ensures a didactical and coherent buildup. The main emphasis is put on the presentation of ideas and qualitative considerations, illustrated by specific examples and applications. Conditions and explanations that are essential for the practical application of methods are discussed thoroughly</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Mechanics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Mechanics / Solids</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Continuum mechanics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum mechanics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhurov, Alexei</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=543966</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028537742</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=543966</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=543966</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043113552 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:50Z |
institution | BVB |
isbn | 3110273381 9783110273380 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028537742 |
oclc_num | 829462187 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (447 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter studies in mathematical physics |
spelling | Kukudzhanov, Vladimir N. Verfasser aut Numerical Continuum Mechanics Berlin De Gruyter 2012 1 Online-Ressource (447 pages) txt rdacontent c rdamedia cr rdacarrier De Gruyter studies in mathematical physics 1.12.3 Spatial description Preface; I Basic equations of continuum mechanics; 1 Basic equations of continuous media; 1.1 Methods of describing motion of continuous media; 1.1.1 Coordinate systems and methods of describing motion of continuous media; 1.1.2 Eulerian description; 1.1.3 Lagrangian description; 1.1.4 Differentiation of bases; 1.1.5 Description of deformations and rates of deformation of a continuous medium; 1.2 Conservation laws. Integral and differential forms; 1.2.1 Integral form of conservation laws; 1.2.2 Differential form of conservation laws; 1.2.3 Conservation laws at solution discontinuities 1.2.4 Conclusions1.3 Thermodynamics; 1.3.1 First law of thermodynamics; 1.3.2 Second law of thermodynamics; 1.3.3 Conclusions; 1.4 Constitutive equations; 1.4.1 General form of constitutive equations. Internal variables; 1.4.2 Equations of viscous compressible heat-conducting gases; 1.4.3 Thermoelastic isotropic media; 1.4.4 Combined media; 1.4.5 Rigid-plastic media with translationally isotropic hardening; 1.4.6 Elastoplastic model; 1.5 Theory of plastic flow. Theory of internal variables; 1.5.1 Statement of the problem. Equations of an elastoplastic medium 1.5.2 Equations of an elastoviscoplastic medium1.6 Experimental determination of constitutive relations under dynamic loading; 1.6.1 Experimental results and experimentally obtained constitutive equations; 1.6.2 Substantiation of elastoviscoplastic equations on the basis of dislocation theory; 1.7 Principle of virtual displacements. Weak solutions to equations of motion; 1.7.1 Principles of virtual displacements and velocities; 1.7.2 Weak formulation of the problem of continuum mechanics; 1.8 Variational principles of continuum mechanics; 1.8.1 Lagrange's variational principle 1.8.2 Hamilton's variational principle1.8.3 Castigliano's variational principle; 1.8.4 General variational principle for solving continuum mechanics problems; 1.8.5 Estimation of solution error; 1.9 Kinematics of continuous media. Finite deformations; 1.9.1 Description of the motion of solids at large deformations; 1.9.2 Motion: deformation and rotation; 1.9.3 Strain measure. Green-Lagrange and Euler-Almansi strain tensors; 1.9.4 Deformation of area and volume elements; 1.9.5 Transformations: initial, reference, and intermediate configurations 1.9.6 Differentiation of tensors. Rate of deformation measures1.10 Stress measures; 1.10.1 Current configuration. Cauchy stress tensor; 1.10.2 Current and initial configurations. The first and second Piola-Kirchhoff stress tensors; 1.10.3 Measures of the rate of change of stress tensors; 1.11 Variational principles for finite deformations; 1.11.1 Principle of virtual work; 1.11.2 Statement of the principle in increments; 1.12 Constitutive equations of plasticity under finite deformations; 1.12.1 Multiplicative decomposition. Deformation gradients; 1.12.2 Material description This work focuses on computational methods in continuum thermomechanics. The text is based on the author's lectures, which ensures a didactical and coherent buildup. The main emphasis is put on the presentation of ideas and qualitative considerations, illustrated by specific examples and applications. Conditions and explanations that are essential for the practical application of methods are discussed thoroughly SCIENCE / Mechanics / General bisacsh SCIENCE / Mechanics / Solids bisacsh Continuum mechanics fast Continuum mechanics Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Kontinuumsmechanik (DE-588)4032296-8 gnd rswk-swf Kontinuumsmechanik (DE-588)4032296-8 s Numerisches Verfahren (DE-588)4128130-5 s 1\p DE-604 Zhurov, Alexei Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=543966 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kukudzhanov, Vladimir N. Numerical Continuum Mechanics SCIENCE / Mechanics / General bisacsh SCIENCE / Mechanics / Solids bisacsh Continuum mechanics fast Continuum mechanics Numerisches Verfahren (DE-588)4128130-5 gnd Kontinuumsmechanik (DE-588)4032296-8 gnd |
subject_GND | (DE-588)4128130-5 (DE-588)4032296-8 |
title | Numerical Continuum Mechanics |
title_auth | Numerical Continuum Mechanics |
title_exact_search | Numerical Continuum Mechanics |
title_full | Numerical Continuum Mechanics |
title_fullStr | Numerical Continuum Mechanics |
title_full_unstemmed | Numerical Continuum Mechanics |
title_short | Numerical Continuum Mechanics |
title_sort | numerical continuum mechanics |
topic | SCIENCE / Mechanics / General bisacsh SCIENCE / Mechanics / Solids bisacsh Continuum mechanics fast Continuum mechanics Numerisches Verfahren (DE-588)4128130-5 gnd Kontinuumsmechanik (DE-588)4032296-8 gnd |
topic_facet | SCIENCE / Mechanics / General SCIENCE / Mechanics / Solids Continuum mechanics Numerisches Verfahren Kontinuumsmechanik |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=543966 |
work_keys_str_mv | AT kukudzhanovvladimirn numericalcontinuummechanics AT zhurovalexei numericalcontinuummechanics |