Max Plus at Work: Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton
Princeton University Press
2014
|
Schriftenreihe: | Princeton series in applied mathematics
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Description based upon print version of record Cover; Title; Copyright; Contents; Preface; Chapter 0. Prolegomenon; 0.1 Introductory Example; 0.2 On the Notation; 0.3 On Eigenvalues and Eigenvectors; 0.4 Some Modeling Issues; 0.5 Counter and Dater Descriptions; 0.6 Exercises; 0.7 Notes; PART I. MAX-PLUS ALGEBRA; Chapter 1. Max-Plus Algebra; 1.1 Basic Concepts and Definitions; 1.2 Vectors and Matrices; 1.3 A First Max-Plus Model; 1.4 The Projective Space; 1.5 Exercises; 1.6 Notes; Chapter 2. Spectral Theory; 2.1 Matrices and Graphs; 2.2 Eigenvalues and Eigenvectors; 2.3 Solving Linear Equations; 2.4 Exercises; 2.5 Notes Chapter 3. Periodic Behavior and the Cycle-Time Vector3.1 Cyclicity and Transient Time; 3.2 The Cycle-Time Vector: Preliminary Results; 3.3 The Cycle-Time Vector: General Results; 3.4 A Sunflower Bouquet; 3.5 Exercises; 3.6 Notes ; Chapter 4. Asymptotic Qualitative Behavior; 4.1 Periodic Regimes; 4.2 Characterization of the Eigenspace; 4.3 Primitive Matrices; 4.4 Limits in the Projective Space; 4.5 Higher-Order Recurrence Relations; 4.6 Exercises; 4.7 Notes; Chapter 5. Numerical Procedures for Eigenvalues of Irreducible Matrices; 5.1 Karp''s Algorithm; 5.2 The Power Algorithm; 5.3 Exercises 5.4 NotesChapter 6. A Numerical Procedure for Eigenvalues of Reducible Matrices; 6.1 Howard''s Algorithm; 6.2 Examples; 6.3 Howard''s Algorithm for Higher-Order Models; 6.4 Exercises; 6.5 Notes; PART II. TOOLS AND APPLICATIONS; Chapter 7. Petri Nets; 7.1 Petri Nets and Event Graphs; 7.2 The Autonomous Case; 7.3 The Nonautonomous Case; 7.4 Exercises; 7.5 Notes; Chapter 8. The Dutch Railway System Captured in a Max-Plus Model; 8.1 The Line System; 8.2 Construction of the Timed Event Graph; 8.3 State Space Description; 8.4 Application of Howard''s Algorithm; 8.5 Exercises; 8.6 Notes Chapter 9. Delays, Stability Measures, and Results for the Whole Network9.1 Propagation of Delays; 9.2 Results for the Whole Dutch Intercity Network; 9.3 Other Modeling Issues ; 9.4 Exercises; 9.5 Notes; Chapter 10. Capacity Assessment; 10.1 Capacity Assessment with Different Types of Trains; 10.2 Capacity Assessment for a Series of Tunnels; 10.3 Exercises; 10.4 Notes; PART III. EXTENSIONS; Chapter 11. Stochastic Max-Plus Systems; 11.1 Basic Definitions and Examples; 11.2 The Subadditive Ergodic Theorem; 11.3 Matrices with Fixed Support; 11.4 Beyond Fixed Support; 11.5 Exercises; 11.6 Notes Chapter 12. Min-Max-Plus Systems and Beyond12.1 Min-Max-Plus Systems; 12.2 Links to Other Mathematical Areas; 12.3 Exercises; 12.4 Notes; Chapter 13. Continuous and Synchronized Flows on Networks; 13.1 Dater and Counter Descriptions; 13.2 Continuous Flows without Capacity Constraints; 13.3 Continuous Flows with Capacity Constraints; 13.4 Exercises; 13.5 Notes; Bibliography; List of Symbols; Index Trains pull into a railroad station and must wait for each other before leaving again in order to let passengers change trains. How do mathematicians then calculate a railroad timetable that accurately reflects their comings and goings? One approach is to use max-plus algebra, a framework used to model Discrete Event Systems, which are well suited to describe the ordering and timing of events. This is the first textbook on max-plus algebra, providing a concise and self-contained introduction to the topic. Applications of max-plus algebra abound in the world around us. Traffic systems, compu |
Beschreibung: | 1 Online-Ressource (226 p.) |
ISBN: | 1400865239 9781400865239 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043112817 | ||
003 | DE-604 | ||
005 | 20191111 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2014 |||| o||u| ||||||eng d | ||
020 | |a 1400865239 |9 1-4008-6523-9 | ||
020 | |a 9781400865239 |9 978-1-4008-6523-9 | ||
035 | |a (OCoLC)891400521 | ||
035 | |a (DE-599)BVBBV043112817 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512 | |
100 | 1 | |a Heidergott, Bernd |e Verfasser |4 aut | |
245 | 1 | 0 | |a Max Plus at Work |b Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications |
264 | 1 | |a Princeton |b Princeton University Press |c 2014 | |
300 | |a 1 Online-Ressource (226 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Princeton series in applied mathematics | |
500 | |a Description based upon print version of record | ||
500 | |a Cover; Title; Copyright; Contents; Preface; Chapter 0. Prolegomenon; 0.1 Introductory Example; 0.2 On the Notation; 0.3 On Eigenvalues and Eigenvectors; 0.4 Some Modeling Issues; 0.5 Counter and Dater Descriptions; 0.6 Exercises; 0.7 Notes; PART I. MAX-PLUS ALGEBRA; Chapter 1. Max-Plus Algebra; 1.1 Basic Concepts and Definitions; 1.2 Vectors and Matrices; 1.3 A First Max-Plus Model; 1.4 The Projective Space; 1.5 Exercises; 1.6 Notes; Chapter 2. Spectral Theory; 2.1 Matrices and Graphs; 2.2 Eigenvalues and Eigenvectors; 2.3 Solving Linear Equations; 2.4 Exercises; 2.5 Notes | ||
500 | |a Chapter 3. Periodic Behavior and the Cycle-Time Vector3.1 Cyclicity and Transient Time; 3.2 The Cycle-Time Vector: Preliminary Results; 3.3 The Cycle-Time Vector: General Results; 3.4 A Sunflower Bouquet; 3.5 Exercises; 3.6 Notes ; Chapter 4. Asymptotic Qualitative Behavior; 4.1 Periodic Regimes; 4.2 Characterization of the Eigenspace; 4.3 Primitive Matrices; 4.4 Limits in the Projective Space; 4.5 Higher-Order Recurrence Relations; 4.6 Exercises; 4.7 Notes; Chapter 5. Numerical Procedures for Eigenvalues of Irreducible Matrices; 5.1 Karp''s Algorithm; 5.2 The Power Algorithm; 5.3 Exercises | ||
500 | |a 5.4 NotesChapter 6. A Numerical Procedure for Eigenvalues of Reducible Matrices; 6.1 Howard''s Algorithm; 6.2 Examples; 6.3 Howard''s Algorithm for Higher-Order Models; 6.4 Exercises; 6.5 Notes; PART II. TOOLS AND APPLICATIONS; Chapter 7. Petri Nets; 7.1 Petri Nets and Event Graphs; 7.2 The Autonomous Case; 7.3 The Nonautonomous Case; 7.4 Exercises; 7.5 Notes; Chapter 8. The Dutch Railway System Captured in a Max-Plus Model; 8.1 The Line System; 8.2 Construction of the Timed Event Graph; 8.3 State Space Description; 8.4 Application of Howard''s Algorithm; 8.5 Exercises; 8.6 Notes | ||
500 | |a Chapter 9. Delays, Stability Measures, and Results for the Whole Network9.1 Propagation of Delays; 9.2 Results for the Whole Dutch Intercity Network; 9.3 Other Modeling Issues ; 9.4 Exercises; 9.5 Notes; Chapter 10. Capacity Assessment; 10.1 Capacity Assessment with Different Types of Trains; 10.2 Capacity Assessment for a Series of Tunnels; 10.3 Exercises; 10.4 Notes; PART III. EXTENSIONS; Chapter 11. Stochastic Max-Plus Systems; 11.1 Basic Definitions and Examples; 11.2 The Subadditive Ergodic Theorem; 11.3 Matrices with Fixed Support; 11.4 Beyond Fixed Support; 11.5 Exercises; 11.6 Notes | ||
500 | |a Chapter 12. Min-Max-Plus Systems and Beyond12.1 Min-Max-Plus Systems; 12.2 Links to Other Mathematical Areas; 12.3 Exercises; 12.4 Notes; Chapter 13. Continuous and Synchronized Flows on Networks; 13.1 Dater and Counter Descriptions; 13.2 Continuous Flows without Capacity Constraints; 13.3 Continuous Flows with Capacity Constraints; 13.4 Exercises; 13.5 Notes; Bibliography; List of Symbols; Index | ||
500 | |a Trains pull into a railroad station and must wait for each other before leaving again in order to let passengers change trains. How do mathematicians then calculate a railroad timetable that accurately reflects their comings and goings? One approach is to use max-plus algebra, a framework used to model Discrete Event Systems, which are well suited to describe the ordering and timing of events. This is the first textbook on max-plus algebra, providing a concise and self-contained introduction to the topic. Applications of max-plus algebra abound in the world around us. Traffic systems, compu | ||
650 | 4 | |a Matrices / Textbooks | |
650 | 4 | |a System theory / Textbooks | |
650 | 7 | |a MATHEMATICS / Algebra / Intermediate |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Algebra / General |2 bisacsh | |
650 | 7 | |a Matrices |2 fast | |
650 | 7 | |a System theory |2 fast | |
650 | 4 | |a Matrices |v Textbooks | |
650 | 4 | |a System theory |v Textbooks | |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diskretes Ereignissystem |0 (DE-588)4196828-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | 2 | |a Diskretes Ereignissystem |0 (DE-588)4196828-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Olsder, Geert Jan |e Sonstige |4 oth | |
700 | 1 | |a van der Woude, Jacob |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=818436 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028537008 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=818436 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=818436 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175534367703040 |
---|---|
any_adam_object | |
author | Heidergott, Bernd |
author_facet | Heidergott, Bernd |
author_role | aut |
author_sort | Heidergott, Bernd |
author_variant | b h bh |
building | Verbundindex |
bvnumber | BV043112817 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)891400521 (DE-599)BVBBV043112817 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05878nmm a2200637zc 4500</leader><controlfield tag="001">BV043112817</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191111 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400865239</subfield><subfield code="9">1-4008-6523-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400865239</subfield><subfield code="9">978-1-4008-6523-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)891400521</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043112817</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heidergott, Bernd</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Max Plus at Work</subfield><subfield code="b">Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (226 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Princeton series in applied mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Preface; Chapter 0. Prolegomenon; 0.1 Introductory Example; 0.2 On the Notation; 0.3 On Eigenvalues and Eigenvectors; 0.4 Some Modeling Issues; 0.5 Counter and Dater Descriptions; 0.6 Exercises; 0.7 Notes; PART I. MAX-PLUS ALGEBRA; Chapter 1. Max-Plus Algebra; 1.1 Basic Concepts and Definitions; 1.2 Vectors and Matrices; 1.3 A First Max-Plus Model; 1.4 The Projective Space; 1.5 Exercises; 1.6 Notes; Chapter 2. Spectral Theory; 2.1 Matrices and Graphs; 2.2 Eigenvalues and Eigenvectors; 2.3 Solving Linear Equations; 2.4 Exercises; 2.5 Notes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 3. Periodic Behavior and the Cycle-Time Vector3.1 Cyclicity and Transient Time; 3.2 The Cycle-Time Vector: Preliminary Results; 3.3 The Cycle-Time Vector: General Results; 3.4 A Sunflower Bouquet; 3.5 Exercises; 3.6 Notes ; Chapter 4. Asymptotic Qualitative Behavior; 4.1 Periodic Regimes; 4.2 Characterization of the Eigenspace; 4.3 Primitive Matrices; 4.4 Limits in the Projective Space; 4.5 Higher-Order Recurrence Relations; 4.6 Exercises; 4.7 Notes; Chapter 5. Numerical Procedures for Eigenvalues of Irreducible Matrices; 5.1 Karp''s Algorithm; 5.2 The Power Algorithm; 5.3 Exercises</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5.4 NotesChapter 6. A Numerical Procedure for Eigenvalues of Reducible Matrices; 6.1 Howard''s Algorithm; 6.2 Examples; 6.3 Howard''s Algorithm for Higher-Order Models; 6.4 Exercises; 6.5 Notes; PART II. TOOLS AND APPLICATIONS; Chapter 7. Petri Nets; 7.1 Petri Nets and Event Graphs; 7.2 The Autonomous Case; 7.3 The Nonautonomous Case; 7.4 Exercises; 7.5 Notes; Chapter 8. The Dutch Railway System Captured in a Max-Plus Model; 8.1 The Line System; 8.2 Construction of the Timed Event Graph; 8.3 State Space Description; 8.4 Application of Howard''s Algorithm; 8.5 Exercises; 8.6 Notes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 9. Delays, Stability Measures, and Results for the Whole Network9.1 Propagation of Delays; 9.2 Results for the Whole Dutch Intercity Network; 9.3 Other Modeling Issues ; 9.4 Exercises; 9.5 Notes; Chapter 10. Capacity Assessment; 10.1 Capacity Assessment with Different Types of Trains; 10.2 Capacity Assessment for a Series of Tunnels; 10.3 Exercises; 10.4 Notes; PART III. EXTENSIONS; Chapter 11. Stochastic Max-Plus Systems; 11.1 Basic Definitions and Examples; 11.2 The Subadditive Ergodic Theorem; 11.3 Matrices with Fixed Support; 11.4 Beyond Fixed Support; 11.5 Exercises; 11.6 Notes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 12. Min-Max-Plus Systems and Beyond12.1 Min-Max-Plus Systems; 12.2 Links to Other Mathematical Areas; 12.3 Exercises; 12.4 Notes; Chapter 13. Continuous and Synchronized Flows on Networks; 13.1 Dater and Counter Descriptions; 13.2 Continuous Flows without Capacity Constraints; 13.3 Continuous Flows with Capacity Constraints; 13.4 Exercises; 13.5 Notes; Bibliography; List of Symbols; Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Trains pull into a railroad station and must wait for each other before leaving again in order to let passengers change trains. How do mathematicians then calculate a railroad timetable that accurately reflects their comings and goings? One approach is to use max-plus algebra, a framework used to model Discrete Event Systems, which are well suited to describe the ordering and timing of events. This is the first textbook on max-plus algebra, providing a concise and self-contained introduction to the topic. Applications of max-plus algebra abound in the world around us. Traffic systems, compu</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices / Textbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System theory / Textbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Intermediate</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">System theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield><subfield code="v">Textbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System theory</subfield><subfield code="v">Textbooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskretes Ereignissystem</subfield><subfield code="0">(DE-588)4196828-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Diskretes Ereignissystem</subfield><subfield code="0">(DE-588)4196828-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olsder, Geert Jan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van der Woude, Jacob</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=818436</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028537008</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=818436</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=818436</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043112817 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:49Z |
institution | BVB |
isbn | 1400865239 9781400865239 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028537008 |
oclc_num | 891400521 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (226 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Princeton University Press |
record_format | marc |
series2 | Princeton series in applied mathematics |
spelling | Heidergott, Bernd Verfasser aut Max Plus at Work Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications Princeton Princeton University Press 2014 1 Online-Ressource (226 p.) txt rdacontent c rdamedia cr rdacarrier Princeton series in applied mathematics Description based upon print version of record Cover; Title; Copyright; Contents; Preface; Chapter 0. Prolegomenon; 0.1 Introductory Example; 0.2 On the Notation; 0.3 On Eigenvalues and Eigenvectors; 0.4 Some Modeling Issues; 0.5 Counter and Dater Descriptions; 0.6 Exercises; 0.7 Notes; PART I. MAX-PLUS ALGEBRA; Chapter 1. Max-Plus Algebra; 1.1 Basic Concepts and Definitions; 1.2 Vectors and Matrices; 1.3 A First Max-Plus Model; 1.4 The Projective Space; 1.5 Exercises; 1.6 Notes; Chapter 2. Spectral Theory; 2.1 Matrices and Graphs; 2.2 Eigenvalues and Eigenvectors; 2.3 Solving Linear Equations; 2.4 Exercises; 2.5 Notes Chapter 3. Periodic Behavior and the Cycle-Time Vector3.1 Cyclicity and Transient Time; 3.2 The Cycle-Time Vector: Preliminary Results; 3.3 The Cycle-Time Vector: General Results; 3.4 A Sunflower Bouquet; 3.5 Exercises; 3.6 Notes ; Chapter 4. Asymptotic Qualitative Behavior; 4.1 Periodic Regimes; 4.2 Characterization of the Eigenspace; 4.3 Primitive Matrices; 4.4 Limits in the Projective Space; 4.5 Higher-Order Recurrence Relations; 4.6 Exercises; 4.7 Notes; Chapter 5. Numerical Procedures for Eigenvalues of Irreducible Matrices; 5.1 Karp''s Algorithm; 5.2 The Power Algorithm; 5.3 Exercises 5.4 NotesChapter 6. A Numerical Procedure for Eigenvalues of Reducible Matrices; 6.1 Howard''s Algorithm; 6.2 Examples; 6.3 Howard''s Algorithm for Higher-Order Models; 6.4 Exercises; 6.5 Notes; PART II. TOOLS AND APPLICATIONS; Chapter 7. Petri Nets; 7.1 Petri Nets and Event Graphs; 7.2 The Autonomous Case; 7.3 The Nonautonomous Case; 7.4 Exercises; 7.5 Notes; Chapter 8. The Dutch Railway System Captured in a Max-Plus Model; 8.1 The Line System; 8.2 Construction of the Timed Event Graph; 8.3 State Space Description; 8.4 Application of Howard''s Algorithm; 8.5 Exercises; 8.6 Notes Chapter 9. Delays, Stability Measures, and Results for the Whole Network9.1 Propagation of Delays; 9.2 Results for the Whole Dutch Intercity Network; 9.3 Other Modeling Issues ; 9.4 Exercises; 9.5 Notes; Chapter 10. Capacity Assessment; 10.1 Capacity Assessment with Different Types of Trains; 10.2 Capacity Assessment for a Series of Tunnels; 10.3 Exercises; 10.4 Notes; PART III. EXTENSIONS; Chapter 11. Stochastic Max-Plus Systems; 11.1 Basic Definitions and Examples; 11.2 The Subadditive Ergodic Theorem; 11.3 Matrices with Fixed Support; 11.4 Beyond Fixed Support; 11.5 Exercises; 11.6 Notes Chapter 12. Min-Max-Plus Systems and Beyond12.1 Min-Max-Plus Systems; 12.2 Links to Other Mathematical Areas; 12.3 Exercises; 12.4 Notes; Chapter 13. Continuous and Synchronized Flows on Networks; 13.1 Dater and Counter Descriptions; 13.2 Continuous Flows without Capacity Constraints; 13.3 Continuous Flows with Capacity Constraints; 13.4 Exercises; 13.5 Notes; Bibliography; List of Symbols; Index Trains pull into a railroad station and must wait for each other before leaving again in order to let passengers change trains. How do mathematicians then calculate a railroad timetable that accurately reflects their comings and goings? One approach is to use max-plus algebra, a framework used to model Discrete Event Systems, which are well suited to describe the ordering and timing of events. This is the first textbook on max-plus algebra, providing a concise and self-contained introduction to the topic. Applications of max-plus algebra abound in the world around us. Traffic systems, compu Matrices / Textbooks System theory / Textbooks MATHEMATICS / Algebra / Intermediate bisacsh MATHEMATICS / Algebra / General bisacsh Matrices fast System theory fast Matrices Textbooks System theory Textbooks Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Diskretes Ereignissystem (DE-588)4196828-1 gnd rswk-swf Matrix Mathematik (DE-588)4037968-1 gnd rswk-swf Matrix Mathematik (DE-588)4037968-1 s Numerisches Verfahren (DE-588)4128130-5 s Diskretes Ereignissystem (DE-588)4196828-1 s 1\p DE-604 Olsder, Geert Jan Sonstige oth van der Woude, Jacob Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=818436 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Heidergott, Bernd Max Plus at Work Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications Matrices / Textbooks System theory / Textbooks MATHEMATICS / Algebra / Intermediate bisacsh MATHEMATICS / Algebra / General bisacsh Matrices fast System theory fast Matrices Textbooks System theory Textbooks Numerisches Verfahren (DE-588)4128130-5 gnd Diskretes Ereignissystem (DE-588)4196828-1 gnd Matrix Mathematik (DE-588)4037968-1 gnd |
subject_GND | (DE-588)4128130-5 (DE-588)4196828-1 (DE-588)4037968-1 |
title | Max Plus at Work Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications |
title_auth | Max Plus at Work Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications |
title_exact_search | Max Plus at Work Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications |
title_full | Max Plus at Work Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications |
title_fullStr | Max Plus at Work Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications |
title_full_unstemmed | Max Plus at Work Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications |
title_short | Max Plus at Work |
title_sort | max plus at work modeling and analysis of synchronized systems a course on max plus algebra and its applications |
title_sub | Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications |
topic | Matrices / Textbooks System theory / Textbooks MATHEMATICS / Algebra / Intermediate bisacsh MATHEMATICS / Algebra / General bisacsh Matrices fast System theory fast Matrices Textbooks System theory Textbooks Numerisches Verfahren (DE-588)4128130-5 gnd Diskretes Ereignissystem (DE-588)4196828-1 gnd Matrix Mathematik (DE-588)4037968-1 gnd |
topic_facet | Matrices / Textbooks System theory / Textbooks MATHEMATICS / Algebra / Intermediate MATHEMATICS / Algebra / General Matrices System theory Matrices Textbooks System theory Textbooks Numerisches Verfahren Diskretes Ereignissystem Matrix Mathematik |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=818436 |
work_keys_str_mv | AT heidergottbernd maxplusatworkmodelingandanalysisofsynchronizedsystemsacourseonmaxplusalgebraanditsapplications AT olsdergeertjan maxplusatworkmodelingandanalysisofsynchronizedsystemsacourseonmaxplusalgebraanditsapplications AT vanderwoudejacob maxplusatworkmodelingandanalysisofsynchronizedsystemsacourseonmaxplusalgebraanditsapplications |