Ergodicity for infinite dimensional systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1996
|
Schriftenreihe: | London Mathematical Society lecture note series
229 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 321-337) and index I. Markovian Dynamical Systems. 1. General Dynamical Systems. 2. Canonical Markovian Systems. 3. Ergodic and mixing measures. 4. Regular Markovian systems -- II. Invariant measures for stochastic evolution equations. 5. Stochastic Differential Equations. 6. Existence of invariant measures. 7. Uniqueness of invariant measures. 8. Densities of invariant measures -- III. Invariant measures for specific models. 9. Ornstein -- Uhlenbeck processes. 10. Stochastic delay systems. 11. Reaction-Diffusion equations. 12. Spin systems. 13. Systems perturbed through the boundary. 14. Burgers equation. 15. Navier-Stokes equations -- IV. Appendices -- A Smoothing properties of convolutions -- B An estimate on modulus of continuity -- C A result on implicit functions |
Beschreibung: | 1 Online-Ressource (xi, 339 p.) |
ISBN: | 0521579007 1107362490 9780521579001 9781107362499 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043112291 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s1996 |||| o||u| ||||||eng d | ||
020 | |a 0521579007 |9 0-521-57900-7 | ||
020 | |a 1107362490 |c electronic bk. |9 1-107-36249-0 | ||
020 | |a 9780521579001 |9 978-0-521-57900-1 | ||
020 | |a 9781107362499 |c electronic bk. |9 978-1-107-36249-9 | ||
035 | |a (OCoLC)836864257 | ||
035 | |a (DE-599)BVBBV043112291 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 519.2 |2 22 | |
100 | 1 | |a Da Prato, Giuseppe |e Verfasser |4 aut | |
245 | 1 | 0 | |a Ergodicity for infinite dimensional systems |c G. Da Prato, J. Zabczyk |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1996 | |
300 | |a 1 Online-Ressource (xi, 339 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 229 | |
500 | |a Includes bibliographical references (p. 321-337) and index | ||
500 | |a I. Markovian Dynamical Systems. 1. General Dynamical Systems. 2. Canonical Markovian Systems. 3. Ergodic and mixing measures. 4. Regular Markovian systems -- II. Invariant measures for stochastic evolution equations. 5. Stochastic Differential Equations. 6. Existence of invariant measures. 7. Uniqueness of invariant measures. 8. Densities of invariant measures -- III. Invariant measures for specific models. 9. Ornstein -- Uhlenbeck processes. 10. Stochastic delay systems. 11. Reaction-Diffusion equations. 12. Spin systems. 13. Systems perturbed through the boundary. 14. Burgers equation. 15. Navier-Stokes equations -- IV. Appendices -- A Smoothing properties of convolutions -- B An estimate on modulus of continuity -- C A result on implicit functions | ||
650 | 7 | |a Equations aux dérivées partielles stochastiques |2 ram | |
650 | 7 | |a Dynamique différentiable |2 ram | |
650 | 7 | |a Théorie ergodique |2 ram | |
650 | 7 | |a Oneindige dimensie |2 gtt | |
650 | 7 | |a Ergodiciteit |2 gtt | |
650 | 7 | |a Stochastische differentiaalvergelijkingen |2 gtt | |
650 | 7 | |a Feller-Halbgruppe |2 swd | |
650 | 7 | |a Stochastisches dynamisches System |2 swd | |
650 | 7 | |a Evolutionsgleichung |2 swd | |
650 | 4 | |a Dynamique différentiable | |
650 | 4 | |a Equations aux dérivées partielles stochastiques | |
650 | 4 | |a Ergodiciteit | |
650 | 4 | |a Oneindige dimensie | |
650 | 4 | |a Stochastische differentiaalvergelijkingen | |
650 | 4 | |a Théorie ergodique | |
650 | 7 | |a Asymptotisches Lösungsverhalten |2 gnd | |
650 | 7 | |a Evolutionsgleichung |2 gnd | |
650 | 7 | |a Stochastische Differentialgleichung |2 gnd | |
650 | 7 | |a Unendlichdimensionaler Raum |2 gnd | |
650 | 7 | |a MATHEMATICS / Probability & Statistics / General |2 bisacsh | |
650 | 7 | |a Differentiable dynamical systems |2 fast | |
650 | 7 | |a Ergodic theory |2 fast | |
650 | 7 | |a Stochastic partial differential equations / Asymptotic theory |2 fast | |
650 | 4 | |a Stochastic partial differential equations |x Asymptotic theory | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 4 | |a Ergodic theory | |
650 | 0 | 7 | |a Asymptotisches Lösungsverhalten |0 (DE-588)4134367-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Evolutionsgleichung |0 (DE-588)4129061-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unendlichdimensionaler Raum |0 (DE-588)4207852-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Evolutionsgleichung |0 (DE-588)4129061-6 |D s |
689 | 0 | 1 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |D s |
689 | 0 | 2 | |a Unendlichdimensionaler Raum |0 (DE-588)4207852-0 |D s |
689 | 0 | 3 | |a Asymptotisches Lösungsverhalten |0 (DE-588)4134367-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Zabczyk, Jerzy |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552521 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028536482 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552521 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552521 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175533327515648 |
---|---|
any_adam_object | |
author | Da Prato, Giuseppe |
author_facet | Da Prato, Giuseppe |
author_role | aut |
author_sort | Da Prato, Giuseppe |
author_variant | p g d pg pgd |
building | Verbundindex |
bvnumber | BV043112291 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)836864257 (DE-599)BVBBV043112291 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04407nmm a2200829zcb4500</leader><controlfield tag="001">BV043112291</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521579007</subfield><subfield code="9">0-521-57900-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362490</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-36249-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521579001</subfield><subfield code="9">978-0-521-57900-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362499</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-36249-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836864257</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043112291</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Da Prato, Giuseppe</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ergodicity for infinite dimensional systems</subfield><subfield code="c">G. Da Prato, J. Zabczyk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 339 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">229</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 321-337) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">I. Markovian Dynamical Systems. 1. General Dynamical Systems. 2. Canonical Markovian Systems. 3. Ergodic and mixing measures. 4. Regular Markovian systems -- II. Invariant measures for stochastic evolution equations. 5. Stochastic Differential Equations. 6. Existence of invariant measures. 7. Uniqueness of invariant measures. 8. Densities of invariant measures -- III. Invariant measures for specific models. 9. Ornstein -- Uhlenbeck processes. 10. Stochastic delay systems. 11. Reaction-Diffusion equations. 12. Spin systems. 13. Systems perturbed through the boundary. 14. Burgers equation. 15. Navier-Stokes equations -- IV. Appendices -- A Smoothing properties of convolutions -- B An estimate on modulus of continuity -- C A result on implicit functions</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equations aux dérivées partielles stochastiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamique différentiable</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Théorie ergodique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oneindige dimensie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ergodiciteit</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische differentiaalvergelijkingen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feller-Halbgruppe</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastisches dynamisches System</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Evolutionsgleichung</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamique différentiable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equations aux dérivées partielles stochastiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ergodiciteit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oneindige dimensie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastische differentiaalvergelijkingen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorie ergodique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Asymptotisches Lösungsverhalten</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Evolutionsgleichung</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Unendlichdimensionaler Raum</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Probability & Statistics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentiable dynamical systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ergodic theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic partial differential equations / Asymptotic theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic partial differential equations</subfield><subfield code="x">Asymptotic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ergodic theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotisches Lösungsverhalten</subfield><subfield code="0">(DE-588)4134367-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolutionsgleichung</subfield><subfield code="0">(DE-588)4129061-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unendlichdimensionaler Raum</subfield><subfield code="0">(DE-588)4207852-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Evolutionsgleichung</subfield><subfield code="0">(DE-588)4129061-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Unendlichdimensionaler Raum</subfield><subfield code="0">(DE-588)4207852-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Asymptotisches Lösungsverhalten</subfield><subfield code="0">(DE-588)4134367-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zabczyk, Jerzy</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552521</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028536482</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552521</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552521</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043112291 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:48Z |
institution | BVB |
isbn | 0521579007 1107362490 9780521579001 9781107362499 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028536482 |
oclc_num | 836864257 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xi, 339 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Da Prato, Giuseppe Verfasser aut Ergodicity for infinite dimensional systems G. Da Prato, J. Zabczyk Cambridge Cambridge University Press 1996 1 Online-Ressource (xi, 339 p.) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 229 Includes bibliographical references (p. 321-337) and index I. Markovian Dynamical Systems. 1. General Dynamical Systems. 2. Canonical Markovian Systems. 3. Ergodic and mixing measures. 4. Regular Markovian systems -- II. Invariant measures for stochastic evolution equations. 5. Stochastic Differential Equations. 6. Existence of invariant measures. 7. Uniqueness of invariant measures. 8. Densities of invariant measures -- III. Invariant measures for specific models. 9. Ornstein -- Uhlenbeck processes. 10. Stochastic delay systems. 11. Reaction-Diffusion equations. 12. Spin systems. 13. Systems perturbed through the boundary. 14. Burgers equation. 15. Navier-Stokes equations -- IV. Appendices -- A Smoothing properties of convolutions -- B An estimate on modulus of continuity -- C A result on implicit functions Equations aux dérivées partielles stochastiques ram Dynamique différentiable ram Théorie ergodique ram Oneindige dimensie gtt Ergodiciteit gtt Stochastische differentiaalvergelijkingen gtt Feller-Halbgruppe swd Stochastisches dynamisches System swd Evolutionsgleichung swd Dynamique différentiable Equations aux dérivées partielles stochastiques Ergodiciteit Oneindige dimensie Stochastische differentiaalvergelijkingen Théorie ergodique Asymptotisches Lösungsverhalten gnd Evolutionsgleichung gnd Stochastische Differentialgleichung gnd Unendlichdimensionaler Raum gnd MATHEMATICS / Probability & Statistics / General bisacsh Differentiable dynamical systems fast Ergodic theory fast Stochastic partial differential equations / Asymptotic theory fast Stochastic partial differential equations Asymptotic theory Differentiable dynamical systems Ergodic theory Asymptotisches Lösungsverhalten (DE-588)4134367-0 gnd rswk-swf Evolutionsgleichung (DE-588)4129061-6 gnd rswk-swf Stochastische Differentialgleichung (DE-588)4057621-8 gnd rswk-swf Unendlichdimensionaler Raum (DE-588)4207852-0 gnd rswk-swf Evolutionsgleichung (DE-588)4129061-6 s Stochastische Differentialgleichung (DE-588)4057621-8 s Unendlichdimensionaler Raum (DE-588)4207852-0 s Asymptotisches Lösungsverhalten (DE-588)4134367-0 s 1\p DE-604 Zabczyk, Jerzy Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552521 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Da Prato, Giuseppe Ergodicity for infinite dimensional systems Equations aux dérivées partielles stochastiques ram Dynamique différentiable ram Théorie ergodique ram Oneindige dimensie gtt Ergodiciteit gtt Stochastische differentiaalvergelijkingen gtt Feller-Halbgruppe swd Stochastisches dynamisches System swd Evolutionsgleichung swd Dynamique différentiable Equations aux dérivées partielles stochastiques Ergodiciteit Oneindige dimensie Stochastische differentiaalvergelijkingen Théorie ergodique Asymptotisches Lösungsverhalten gnd Evolutionsgleichung gnd Stochastische Differentialgleichung gnd Unendlichdimensionaler Raum gnd MATHEMATICS / Probability & Statistics / General bisacsh Differentiable dynamical systems fast Ergodic theory fast Stochastic partial differential equations / Asymptotic theory fast Stochastic partial differential equations Asymptotic theory Differentiable dynamical systems Ergodic theory Asymptotisches Lösungsverhalten (DE-588)4134367-0 gnd Evolutionsgleichung (DE-588)4129061-6 gnd Stochastische Differentialgleichung (DE-588)4057621-8 gnd Unendlichdimensionaler Raum (DE-588)4207852-0 gnd |
subject_GND | (DE-588)4134367-0 (DE-588)4129061-6 (DE-588)4057621-8 (DE-588)4207852-0 |
title | Ergodicity for infinite dimensional systems |
title_auth | Ergodicity for infinite dimensional systems |
title_exact_search | Ergodicity for infinite dimensional systems |
title_full | Ergodicity for infinite dimensional systems G. Da Prato, J. Zabczyk |
title_fullStr | Ergodicity for infinite dimensional systems G. Da Prato, J. Zabczyk |
title_full_unstemmed | Ergodicity for infinite dimensional systems G. Da Prato, J. Zabczyk |
title_short | Ergodicity for infinite dimensional systems |
title_sort | ergodicity for infinite dimensional systems |
topic | Equations aux dérivées partielles stochastiques ram Dynamique différentiable ram Théorie ergodique ram Oneindige dimensie gtt Ergodiciteit gtt Stochastische differentiaalvergelijkingen gtt Feller-Halbgruppe swd Stochastisches dynamisches System swd Evolutionsgleichung swd Dynamique différentiable Equations aux dérivées partielles stochastiques Ergodiciteit Oneindige dimensie Stochastische differentiaalvergelijkingen Théorie ergodique Asymptotisches Lösungsverhalten gnd Evolutionsgleichung gnd Stochastische Differentialgleichung gnd Unendlichdimensionaler Raum gnd MATHEMATICS / Probability & Statistics / General bisacsh Differentiable dynamical systems fast Ergodic theory fast Stochastic partial differential equations / Asymptotic theory fast Stochastic partial differential equations Asymptotic theory Differentiable dynamical systems Ergodic theory Asymptotisches Lösungsverhalten (DE-588)4134367-0 gnd Evolutionsgleichung (DE-588)4129061-6 gnd Stochastische Differentialgleichung (DE-588)4057621-8 gnd Unendlichdimensionaler Raum (DE-588)4207852-0 gnd |
topic_facet | Equations aux dérivées partielles stochastiques Dynamique différentiable Théorie ergodique Oneindige dimensie Ergodiciteit Stochastische differentiaalvergelijkingen Feller-Halbgruppe Stochastisches dynamisches System Evolutionsgleichung Asymptotisches Lösungsverhalten Stochastische Differentialgleichung Unendlichdimensionaler Raum MATHEMATICS / Probability & Statistics / General Differentiable dynamical systems Ergodic theory Stochastic partial differential equations / Asymptotic theory Stochastic partial differential equations Asymptotic theory |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552521 |
work_keys_str_mv | AT dapratogiuseppe ergodicityforinfinitedimensionalsystems AT zabczykjerzy ergodicityforinfinitedimensionalsystems |