Hochschild cohomology of von Neumann algebras:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1995
|
Schriftenreihe: | London Mathematical Society lecture note series
203 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. [182]-191] and index 1. Completely Bounded Operators -- 2. Derivations -- 3. Averaging in Continuous and Normal Cohomology -- 4. Completely Bounded Cohomology -- 5. Hyperfinite Subalgebras -- 6. Continuous Cohomology -- 7. Stability of Products -- 8. Appendix The continuous Hochschild cohomology of dual normal modules over a von Neumann algebra is the subject of this book. The necessary technical results are developed assuming a familiarity with basic C*-algebra and von Neumann algebra theory, including the decomposition into two types, but no prior knowledge of cohomology theory is required and the theory of completely bounded and multilinear operators is given fully. Central to this book are those cases when the continuous Hochschild cohomology H[superscript n](M, M) of the von Neumann algebra M over itself is zero. The material in this book lies in the area common to Banach algebras, operator algebras and homological algebra, and will be of interest to researchers from these fields |
Beschreibung: | 1 Online-Ressource (vii, 196 p.) |
ISBN: | 0511526199 0521478804 1107362148 9780511526190 9780521478809 9781107362147 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043112168 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s1995 |||| o||u| ||||||eng d | ||
020 | |a 0511526199 |c ebook |9 0-511-52619-9 | ||
020 | |a 0521478804 |9 0-521-47880-4 | ||
020 | |a 1107362148 |c electronic bk. |9 1-107-36214-8 | ||
020 | |a 9780511526190 |c ebook |9 978-0-511-52619-0 | ||
020 | |a 9780521478809 |9 978-0-521-47880-9 | ||
020 | |a 9781107362147 |c electronic bk. |9 978-1-107-36214-7 | ||
035 | |a (OCoLC)836864277 | ||
035 | |a (DE-599)BVBBV043112168 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 514/.23 |2 22 | |
100 | 1 | |a Sinclair, Allan M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hochschild cohomology of von Neumann algebras |c Allan M. Sinclair, Roger R. Smith |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1995 | |
300 | |a 1 Online-Ressource (vii, 196 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 203 | |
500 | |a Includes bibliographical references (p. [182]-191] and index | ||
500 | |a 1. Completely Bounded Operators -- 2. Derivations -- 3. Averaging in Continuous and Normal Cohomology -- 4. Completely Bounded Cohomology -- 5. Hyperfinite Subalgebras -- 6. Continuous Cohomology -- 7. Stability of Products -- 8. Appendix | ||
500 | |a The continuous Hochschild cohomology of dual normal modules over a von Neumann algebra is the subject of this book. The necessary technical results are developed assuming a familiarity with basic C*-algebra and von Neumann algebra theory, including the decomposition into two types, but no prior knowledge of cohomology theory is required and the theory of completely bounded and multilinear operators is given fully. Central to this book are those cases when the continuous Hochschild cohomology H[superscript n](M, M) of the von Neumann algebra M over itself is zero. The material in this book lies in the area common to Banach algebras, operator algebras and homological algebra, and will be of interest to researchers from these fields | ||
650 | 7 | |a Homologie |2 ram | |
650 | 7 | |a Von Neumann, algèbres de |2 ram | |
650 | 7 | |a Homologische algebra |2 gtt | |
650 | 7 | |a Von Neumann-algebra's |2 gtt | |
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 7 | |a Homology theory |2 fast | |
650 | 7 | |a Von Neumann algebras |2 fast | |
650 | 4 | |a Homology theory | |
650 | 4 | |a Von Neumann algebras | |
650 | 0 | 7 | |a Hochschild-Kohomologie |0 (DE-588)4374357-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a VonNeumann-Algebra |0 (DE-588)4388395-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hochschild-Kohomologie |0 (DE-588)4374357-2 |D s |
689 | 0 | 1 | |a VonNeumann-Algebra |0 (DE-588)4388395-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Smith, Roger R. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552469 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028536359 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552469 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552469 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175533094731776 |
---|---|
any_adam_object | |
author | Sinclair, Allan M. |
author_facet | Sinclair, Allan M. |
author_role | aut |
author_sort | Sinclair, Allan M. |
author_variant | a m s am ams |
building | Verbundindex |
bvnumber | BV043112168 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)836864277 (DE-599)BVBBV043112168 |
dewey-full | 514/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.23 |
dewey-search | 514/.23 |
dewey-sort | 3514 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03496nmm a2200613zcb4500</leader><controlfield tag="001">BV043112168</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511526199</subfield><subfield code="c">ebook</subfield><subfield code="9">0-511-52619-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521478804</subfield><subfield code="9">0-521-47880-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362148</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-36214-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526190</subfield><subfield code="c">ebook</subfield><subfield code="9">978-0-511-52619-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521478809</subfield><subfield code="9">978-0-521-47880-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362147</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-36214-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836864277</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043112168</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.23</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sinclair, Allan M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hochschild cohomology of von Neumann algebras</subfield><subfield code="c">Allan M. Sinclair, Roger R. Smith</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 196 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">203</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [182]-191] and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Completely Bounded Operators -- 2. Derivations -- 3. Averaging in Continuous and Normal Cohomology -- 4. Completely Bounded Cohomology -- 5. Hyperfinite Subalgebras -- 6. Continuous Cohomology -- 7. Stability of Products -- 8. Appendix</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The continuous Hochschild cohomology of dual normal modules over a von Neumann algebra is the subject of this book. The necessary technical results are developed assuming a familiarity with basic C*-algebra and von Neumann algebra theory, including the decomposition into two types, but no prior knowledge of cohomology theory is required and the theory of completely bounded and multilinear operators is given fully. Central to this book are those cases when the continuous Hochschild cohomology H[superscript n](M, M) of the von Neumann algebra M over itself is zero. The material in this book lies in the area common to Banach algebras, operator algebras and homological algebra, and will be of interest to researchers from these fields</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homologie</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Von Neumann, algèbres de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homologische algebra</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Von Neumann-algebra's</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homology theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Von Neumann algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Von Neumann algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hochschild-Kohomologie</subfield><subfield code="0">(DE-588)4374357-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">VonNeumann-Algebra</subfield><subfield code="0">(DE-588)4388395-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hochschild-Kohomologie</subfield><subfield code="0">(DE-588)4374357-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">VonNeumann-Algebra</subfield><subfield code="0">(DE-588)4388395-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Roger R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552469</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028536359</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552469</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552469</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043112168 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:48Z |
institution | BVB |
isbn | 0511526199 0521478804 1107362148 9780511526190 9780521478809 9781107362147 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028536359 |
oclc_num | 836864277 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (vii, 196 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Sinclair, Allan M. Verfasser aut Hochschild cohomology of von Neumann algebras Allan M. Sinclair, Roger R. Smith Cambridge Cambridge University Press 1995 1 Online-Ressource (vii, 196 p.) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 203 Includes bibliographical references (p. [182]-191] and index 1. Completely Bounded Operators -- 2. Derivations -- 3. Averaging in Continuous and Normal Cohomology -- 4. Completely Bounded Cohomology -- 5. Hyperfinite Subalgebras -- 6. Continuous Cohomology -- 7. Stability of Products -- 8. Appendix The continuous Hochschild cohomology of dual normal modules over a von Neumann algebra is the subject of this book. The necessary technical results are developed assuming a familiarity with basic C*-algebra and von Neumann algebra theory, including the decomposition into two types, but no prior knowledge of cohomology theory is required and the theory of completely bounded and multilinear operators is given fully. Central to this book are those cases when the continuous Hochschild cohomology H[superscript n](M, M) of the von Neumann algebra M over itself is zero. The material in this book lies in the area common to Banach algebras, operator algebras and homological algebra, and will be of interest to researchers from these fields Homologie ram Von Neumann, algèbres de ram Homologische algebra gtt Von Neumann-algebra's gtt MATHEMATICS / Topology bisacsh Homology theory fast Von Neumann algebras fast Homology theory Von Neumann algebras Hochschild-Kohomologie (DE-588)4374357-2 gnd rswk-swf VonNeumann-Algebra (DE-588)4388395-3 gnd rswk-swf Hochschild-Kohomologie (DE-588)4374357-2 s VonNeumann-Algebra (DE-588)4388395-3 s 1\p DE-604 Smith, Roger R. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552469 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sinclair, Allan M. Hochschild cohomology of von Neumann algebras Homologie ram Von Neumann, algèbres de ram Homologische algebra gtt Von Neumann-algebra's gtt MATHEMATICS / Topology bisacsh Homology theory fast Von Neumann algebras fast Homology theory Von Neumann algebras Hochschild-Kohomologie (DE-588)4374357-2 gnd VonNeumann-Algebra (DE-588)4388395-3 gnd |
subject_GND | (DE-588)4374357-2 (DE-588)4388395-3 |
title | Hochschild cohomology of von Neumann algebras |
title_auth | Hochschild cohomology of von Neumann algebras |
title_exact_search | Hochschild cohomology of von Neumann algebras |
title_full | Hochschild cohomology of von Neumann algebras Allan M. Sinclair, Roger R. Smith |
title_fullStr | Hochschild cohomology of von Neumann algebras Allan M. Sinclair, Roger R. Smith |
title_full_unstemmed | Hochschild cohomology of von Neumann algebras Allan M. Sinclair, Roger R. Smith |
title_short | Hochschild cohomology of von Neumann algebras |
title_sort | hochschild cohomology of von neumann algebras |
topic | Homologie ram Von Neumann, algèbres de ram Homologische algebra gtt Von Neumann-algebra's gtt MATHEMATICS / Topology bisacsh Homology theory fast Von Neumann algebras fast Homology theory Von Neumann algebras Hochschild-Kohomologie (DE-588)4374357-2 gnd VonNeumann-Algebra (DE-588)4388395-3 gnd |
topic_facet | Homologie Von Neumann, algèbres de Homologische algebra Von Neumann-algebra's MATHEMATICS / Topology Homology theory Von Neumann algebras Hochschild-Kohomologie VonNeumann-Algebra |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552469 |
work_keys_str_mv | AT sinclairallanm hochschildcohomologyofvonneumannalgebras AT smithrogerr hochschildcohomologyofvonneumannalgebras |