Optimization algorithms on matrix manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
©2008
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differentia Introduction -- Motivation and applications -- Matrix manifolds : first-order geometry -- Line-search algorithms on manifolds -- Matrix manifolds : second-order geometry -- Newton's method -- Trust-region methods -- A constellation of superlinear algorithms |
Beschreibung: | 1 Online-Ressource (xiv, 224 pages) |
ISBN: | 1400830249 9781400830244 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043109470 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2008 |||| o||u| ||||||eng d | ||
020 | |a 1400830249 |c electronic bk. |9 1-4008-3024-9 | ||
020 | |a 9781400830244 |c electronic bk. |9 978-1-4008-3024-4 | ||
035 | |a (OCoLC)438732716 | ||
035 | |a (DE-599)BVBBV043109470 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 518.1 |2 22 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a SK 915 |0 (DE-625)143271: |2 rvk | ||
100 | 1 | |a Absil, P.-A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Optimization algorithms on matrix manifolds |c P.-A. Absil, R. Mahony, R. Sepulchre |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c ©2008 | |
300 | |a 1 Online-Ressource (xiv, 224 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differentia | ||
500 | |a Introduction -- Motivation and applications -- Matrix manifolds : first-order geometry -- Line-search algorithms on manifolds -- Matrix manifolds : second-order geometry -- Newton's method -- Trust-region methods -- A constellation of superlinear algorithms | ||
650 | 4 | |a Optimisation mathématique | |
650 | 4 | |a Matrices | |
650 | 4 | |a Algorithmes | |
650 | 7 | |a MATHEMATICS / Numerical Analysis |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Applied |2 bisacsh | |
650 | 7 | |a Algorithms |2 fast | |
650 | 7 | |a Mathematical optimization |2 fast | |
650 | 7 | |a Matrices |2 fast | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Matrices | |
650 | 4 | |a Algorithms | |
650 | 0 | 7 | |a Newton-Verfahren |0 (DE-588)4171693-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Newton-Verfahren |0 (DE-588)4171693-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Mahony, R. |e Sonstige |4 oth | |
700 | 1 | |a Sepulchre, R. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 0-691-13298-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-691-13298-3 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286720 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028533661 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286720 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286720 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175527518404608 |
---|---|
any_adam_object | |
author | Absil, P.-A |
author_facet | Absil, P.-A |
author_role | aut |
author_sort | Absil, P.-A |
author_variant | p a a paa |
building | Verbundindex |
bvnumber | BV043109470 |
classification_rvk | SK 370 SK 915 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)438732716 (DE-599)BVBBV043109470 |
dewey-full | 518.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518.1 |
dewey-search | 518.1 |
dewey-sort | 3518.1 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03416nmm a2200637zc 4500</leader><controlfield tag="001">BV043109470</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400830249</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-3024-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400830244</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-3024-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)438732716</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043109470</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518.1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 915</subfield><subfield code="0">(DE-625)143271:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Absil, P.-A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization algorithms on matrix manifolds</subfield><subfield code="c">P.-A. Absil, R. Mahony, R. Sepulchre</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">©2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 224 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differentia</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Introduction -- Motivation and applications -- Matrix manifolds : first-order geometry -- Line-search algorithms on manifolds -- Matrix manifolds : second-order geometry -- Newton's method -- Trust-region methods -- A constellation of superlinear algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimisation mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithmes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Numerical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Applied</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical optimization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Newton-Verfahren</subfield><subfield code="0">(DE-588)4171693-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Newton-Verfahren</subfield><subfield code="0">(DE-588)4171693-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahony, R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sepulchre, R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">0-691-13298-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-691-13298-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286720</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028533661</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286720</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286720</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043109470 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:42Z |
institution | BVB |
isbn | 1400830249 9781400830244 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028533661 |
oclc_num | 438732716 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiv, 224 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Princeton University Press |
record_format | marc |
spelling | Absil, P.-A. Verfasser aut Optimization algorithms on matrix manifolds P.-A. Absil, R. Mahony, R. Sepulchre Princeton, N.J. Princeton University Press ©2008 1 Online-Ressource (xiv, 224 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differentia Introduction -- Motivation and applications -- Matrix manifolds : first-order geometry -- Line-search algorithms on manifolds -- Matrix manifolds : second-order geometry -- Newton's method -- Trust-region methods -- A constellation of superlinear algorithms Optimisation mathématique Matrices Algorithmes MATHEMATICS / Numerical Analysis bisacsh MATHEMATICS / Applied bisacsh Algorithms fast Mathematical optimization fast Matrices fast Mathematical optimization Algorithms Newton-Verfahren (DE-588)4171693-0 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 s Newton-Verfahren (DE-588)4171693-0 s 1\p DE-604 Mahony, R. Sonstige oth Sepulchre, R. Sonstige oth Erscheint auch als Druck-Ausgabe, Hardcover 0-691-13298-4 Erscheint auch als Druck-Ausgabe, Hardcover 978-0-691-13298-3 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286720 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Absil, P.-A Optimization algorithms on matrix manifolds Optimisation mathématique Matrices Algorithmes MATHEMATICS / Numerical Analysis bisacsh MATHEMATICS / Applied bisacsh Algorithms fast Mathematical optimization fast Matrices fast Mathematical optimization Algorithms Newton-Verfahren (DE-588)4171693-0 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
subject_GND | (DE-588)4171693-0 (DE-588)4037379-4 |
title | Optimization algorithms on matrix manifolds |
title_auth | Optimization algorithms on matrix manifolds |
title_exact_search | Optimization algorithms on matrix manifolds |
title_full | Optimization algorithms on matrix manifolds P.-A. Absil, R. Mahony, R. Sepulchre |
title_fullStr | Optimization algorithms on matrix manifolds P.-A. Absil, R. Mahony, R. Sepulchre |
title_full_unstemmed | Optimization algorithms on matrix manifolds P.-A. Absil, R. Mahony, R. Sepulchre |
title_short | Optimization algorithms on matrix manifolds |
title_sort | optimization algorithms on matrix manifolds |
topic | Optimisation mathématique Matrices Algorithmes MATHEMATICS / Numerical Analysis bisacsh MATHEMATICS / Applied bisacsh Algorithms fast Mathematical optimization fast Matrices fast Mathematical optimization Algorithms Newton-Verfahren (DE-588)4171693-0 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
topic_facet | Optimisation mathématique Matrices Algorithmes MATHEMATICS / Numerical Analysis MATHEMATICS / Applied Algorithms Mathematical optimization Newton-Verfahren Mannigfaltigkeit |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286720 |
work_keys_str_mv | AT absilpa optimizationalgorithmsonmatrixmanifolds AT mahonyr optimizationalgorithmsonmatrixmanifolds AT sepulchrer optimizationalgorithmsonmatrixmanifolds |