Symmetrization & applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
c2006
|
Schriftenreihe: | Series in analysis
v. 3 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Paralleltitel: Symmetrization and applications Includes bibliographical references (p. 141-146) and index Symmetrization -- Some Classical Inequalities -- Comparison Theorems -- Eigenvalue Problems -- Nonlinear Problems The study of isoperimetric inequalities involves a fascinating interplay of analysis, geometry and the theory of partial differential equations. Several conjectures have been made and while many have been resolved, a large number still remain open. One of the principal tools in the study of isoperimetric problems, especially when spherical symmetry is involved, is Schwarz symmetrization, which is also known as the spherically symmetric and decreasing rearrangement of functions. The aim of this book is to give an introduction to the theory of Schwarz symmetrization and study some of its applications. The book gives an modern and up-to-date treatment of the subject and includes several new results proved recently. Effort has been made to keep the exposition as simple and self-contained as possible. A knowledge of the existence theory of weak solutions of elliptic partial differential equations in Sobolev spaces is, however, assumed. Apart from this and a general mathematical maturity at the graduate level, there are no other prerequisites |
Beschreibung: | 1 Online-Ressource (xii, 148 p.) |
ISBN: | 9789812773937 9812773932 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043108147 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2006 |||| o||u| ||||||eng d | ||
020 | |a 9789812773937 |c electronic bk. |9 978-981-277-393-7 | ||
020 | |a 9812773932 |c electronic bk. |9 981-277-393-2 | ||
035 | |a (OCoLC)666958476 | ||
035 | |a (DE-599)BVBBV043108147 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 516 |2 23 | |
100 | 1 | |a Kesavan, S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Symmetrization & applications |c S. Kesavan |
246 | 1 | 3 | |a Symmetrization and applications |
264 | 1 | |a Singapore |b World Scientific |c c2006 | |
300 | |a 1 Online-Ressource (xii, 148 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series in analysis |v v. 3 | |
500 | |a Paralleltitel: Symmetrization and applications | ||
500 | |a Includes bibliographical references (p. 141-146) and index | ||
500 | |a Symmetrization -- Some Classical Inequalities -- Comparison Theorems -- Eigenvalue Problems -- Nonlinear Problems | ||
500 | |a The study of isoperimetric inequalities involves a fascinating interplay of analysis, geometry and the theory of partial differential equations. Several conjectures have been made and while many have been resolved, a large number still remain open. One of the principal tools in the study of isoperimetric problems, especially when spherical symmetry is involved, is Schwarz symmetrization, which is also known as the spherically symmetric and decreasing rearrangement of functions. The aim of this book is to give an introduction to the theory of Schwarz symmetrization and study some of its applications. The book gives an modern and up-to-date treatment of the subject and includes several new results proved recently. Effort has been made to keep the exposition as simple and self-contained as possible. A knowledge of the existence theory of weak solutions of elliptic partial differential equations in Sobolev spaces is, however, assumed. Apart from this and a general mathematical maturity at the graduate level, there are no other prerequisites | ||
650 | 4 | |a Inégalités isopérimétriques | |
650 | 4 | |a Symétrie (Mathématiques) | |
650 | 7 | |a MATHEMATICS / Geometry / General |2 bisacsh | |
650 | 7 | |a Isoperimetric inequalities |2 fast | |
650 | 7 | |a Symmetry (Mathematics) |2 fast | |
650 | 4 | |a Isoperimetric inequalities | |
650 | 4 | |a Symmetry (Mathematics) | |
650 | 0 | 7 | |a Sobolev-Einbettung |0 (DE-588)4181713-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenwertproblem |0 (DE-588)4013802-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetrisierung |0 (DE-588)4738312-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Isoperimetrische Ungleichung |0 (DE-588)4162544-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Isoperimetrische Ungleichung |0 (DE-588)4162544-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Symmetrisierung |0 (DE-588)4738312-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Sobolev-Einbettung |0 (DE-588)4181713-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Eigenwertproblem |0 (DE-588)4013802-1 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514821 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028532338 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514821 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514821 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175524868653056 |
---|---|
any_adam_object | |
author | Kesavan, S. |
author_facet | Kesavan, S. |
author_role | aut |
author_sort | Kesavan, S. |
author_variant | s k sk |
building | Verbundindex |
bvnumber | BV043108147 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)666958476 (DE-599)BVBBV043108147 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04023nmm a2200673zcb4500</leader><controlfield tag="001">BV043108147</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812773937</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-277-393-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812773932</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-277-393-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)666958476</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043108147</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kesavan, S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetrization & applications</subfield><subfield code="c">S. Kesavan</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Symmetrization and applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 148 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in analysis</subfield><subfield code="v">v. 3</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Paralleltitel: Symmetrization and applications</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 141-146) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Symmetrization -- Some Classical Inequalities -- Comparison Theorems -- Eigenvalue Problems -- Nonlinear Problems</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The study of isoperimetric inequalities involves a fascinating interplay of analysis, geometry and the theory of partial differential equations. Several conjectures have been made and while many have been resolved, a large number still remain open. One of the principal tools in the study of isoperimetric problems, especially when spherical symmetry is involved, is Schwarz symmetrization, which is also known as the spherically symmetric and decreasing rearrangement of functions. The aim of this book is to give an introduction to the theory of Schwarz symmetrization and study some of its applications. The book gives an modern and up-to-date treatment of the subject and includes several new results proved recently. Effort has been made to keep the exposition as simple and self-contained as possible. A knowledge of the existence theory of weak solutions of elliptic partial differential equations in Sobolev spaces is, however, assumed. Apart from this and a general mathematical maturity at the graduate level, there are no other prerequisites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inégalités isopérimétriques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symétrie (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Isoperimetric inequalities</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symmetry (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isoperimetric inequalities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sobolev-Einbettung</subfield><subfield code="0">(DE-588)4181713-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrisierung</subfield><subfield code="0">(DE-588)4738312-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Isoperimetrische Ungleichung</subfield><subfield code="0">(DE-588)4162544-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Isoperimetrische Ungleichung</subfield><subfield code="0">(DE-588)4162544-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Symmetrisierung</subfield><subfield code="0">(DE-588)4738312-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Sobolev-Einbettung</subfield><subfield code="0">(DE-588)4181713-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514821</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028532338</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514821</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514821</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043108147 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:40Z |
institution | BVB |
isbn | 9789812773937 9812773932 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028532338 |
oclc_num | 666958476 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xii, 148 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | World Scientific |
record_format | marc |
series2 | Series in analysis |
spelling | Kesavan, S. Verfasser aut Symmetrization & applications S. Kesavan Symmetrization and applications Singapore World Scientific c2006 1 Online-Ressource (xii, 148 p.) txt rdacontent c rdamedia cr rdacarrier Series in analysis v. 3 Paralleltitel: Symmetrization and applications Includes bibliographical references (p. 141-146) and index Symmetrization -- Some Classical Inequalities -- Comparison Theorems -- Eigenvalue Problems -- Nonlinear Problems The study of isoperimetric inequalities involves a fascinating interplay of analysis, geometry and the theory of partial differential equations. Several conjectures have been made and while many have been resolved, a large number still remain open. One of the principal tools in the study of isoperimetric problems, especially when spherical symmetry is involved, is Schwarz symmetrization, which is also known as the spherically symmetric and decreasing rearrangement of functions. The aim of this book is to give an introduction to the theory of Schwarz symmetrization and study some of its applications. The book gives an modern and up-to-date treatment of the subject and includes several new results proved recently. Effort has been made to keep the exposition as simple and self-contained as possible. A knowledge of the existence theory of weak solutions of elliptic partial differential equations in Sobolev spaces is, however, assumed. Apart from this and a general mathematical maturity at the graduate level, there are no other prerequisites Inégalités isopérimétriques Symétrie (Mathématiques) MATHEMATICS / Geometry / General bisacsh Isoperimetric inequalities fast Symmetry (Mathematics) fast Isoperimetric inequalities Symmetry (Mathematics) Sobolev-Einbettung (DE-588)4181713-8 gnd rswk-swf Eigenwertproblem (DE-588)4013802-1 gnd rswk-swf Symmetrisierung (DE-588)4738312-4 gnd rswk-swf Isoperimetrische Ungleichung (DE-588)4162544-4 gnd rswk-swf Isoperimetrische Ungleichung (DE-588)4162544-4 s 1\p DE-604 Symmetrisierung (DE-588)4738312-4 s 2\p DE-604 Sobolev-Einbettung (DE-588)4181713-8 s 3\p DE-604 Eigenwertproblem (DE-588)4013802-1 s 4\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514821 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kesavan, S. Symmetrization & applications Inégalités isopérimétriques Symétrie (Mathématiques) MATHEMATICS / Geometry / General bisacsh Isoperimetric inequalities fast Symmetry (Mathematics) fast Isoperimetric inequalities Symmetry (Mathematics) Sobolev-Einbettung (DE-588)4181713-8 gnd Eigenwertproblem (DE-588)4013802-1 gnd Symmetrisierung (DE-588)4738312-4 gnd Isoperimetrische Ungleichung (DE-588)4162544-4 gnd |
subject_GND | (DE-588)4181713-8 (DE-588)4013802-1 (DE-588)4738312-4 (DE-588)4162544-4 |
title | Symmetrization & applications |
title_alt | Symmetrization and applications |
title_auth | Symmetrization & applications |
title_exact_search | Symmetrization & applications |
title_full | Symmetrization & applications S. Kesavan |
title_fullStr | Symmetrization & applications S. Kesavan |
title_full_unstemmed | Symmetrization & applications S. Kesavan |
title_short | Symmetrization & applications |
title_sort | symmetrization applications |
topic | Inégalités isopérimétriques Symétrie (Mathématiques) MATHEMATICS / Geometry / General bisacsh Isoperimetric inequalities fast Symmetry (Mathematics) fast Isoperimetric inequalities Symmetry (Mathematics) Sobolev-Einbettung (DE-588)4181713-8 gnd Eigenwertproblem (DE-588)4013802-1 gnd Symmetrisierung (DE-588)4738312-4 gnd Isoperimetrische Ungleichung (DE-588)4162544-4 gnd |
topic_facet | Inégalités isopérimétriques Symétrie (Mathématiques) MATHEMATICS / Geometry / General Isoperimetric inequalities Symmetry (Mathematics) Sobolev-Einbettung Eigenwertproblem Symmetrisierung Isoperimetrische Ungleichung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514821 |
work_keys_str_mv | AT kesavans symmetrizationapplications AT kesavans symmetrizationandapplications |