Functional estimation for density, regression models and processes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
c2011
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 191-196) and index 1. Introduction. 1.1. Estimation of a density. 1.2. Estimation of a regression curve. 1.3. Estimation of functionals of processes. 1.4. Content of the book -- 2. Kernel estimator of a density. 2.1. Introduction. 2.2. Risks and optimal bandwidths for the kernel estimator. 2.3. Weak convergence. 2.4. Minimax and histogram estimators. 2.5. Estimation of functionals of a density. 2.6. Density of absolutely continuous distributions. 2.7. Hellinger distance between a density and its estimator. 2.8. Estimation of the density under right-censoring. 2.9. Estimation of the density of left-censored variables. 2.10. Kernel estimator for the density of a process. 2.11. Exercises -- - 3. Kernel estimator of a regression function. 3.1. Introduction and notation. 3.2. Risks and convergence rates for the estimator. 3.3. Optimal bandwidths. 3.4. Weak convergence of the estimator. 3.5. Estimation of a regression curve by local polynomials. 3.6. Estimation in regression models with functional variance. 3.7. Estimation of the mode of a regression function. 3.8. Estimation of a regression function under censoring. 3.9. Proportional odds model. 3.10. Estimation for the regression function of processes. 3.11. Exercises -- 4. Limits for the varying bandwidths estimators. 4.1. Introduction. 4.2. Estimation of densities. 4.3. Estimation of regression functions. 4.4. Estimation for processes. 4.5. Exercises -- - 5. Nonparametric estimation of quantiles. 5.1. Introduction. 5.2. Asymptotics for the quantile processes. 5.3. Bandwidth selection. 5.4. Estimation of the conditional density of Y given X. 5.5. Estimation of conditional quantiles for processes. 5.6. Inverse of a regression function. 5.7. Quantile function of right-censored variables. 5.8. Conditional quantiles with variable bandwidth. 5.9. Exercises -- 6. Nonparametric estimation of intensities for stochastic processes. 6.2. Introduction. 6.2. Risks and convergences for estimators of the intensity. 6.3. Risks and convergences for multiplicative intensities. 6.4. Histograms for intensity and regression functions. 6.5. Estimation of the density of duration excess. 6.6. Estimators for processes on increasing intervals. 6.7. Models with varying intensity or regression coefficients. 6.8. Progressive censoring of a random time sequence. 6.9. Exercises -- - 7. Estimation in semi-parametric regression models. 7.1. Introduction. 7.2. Convergence of the estimators. 7.3. Nonparametric regression with a change of variables. 7.4. Exercises -- 8. Diffusion processes. 8.1. Introduction. 8.2. Estimation for continuous diffusions by discretization. 8.3. Estimation for continuous diffusion processes. 8.4. Estimation of discretely observed diffusions with jumps. 8.5. Continuous estimation for diffusions with jumps. 8.6. Transformations of a non-stationary Gaussian process. 8.7. Exercises -- 9. Applications to time series. 9.1. Nonparametric estimation of the mean. 9.2. Periodic models for time series. 9.3. Nonparametric estimation of the covariance function. 9.4. Nonparametric transformations for stationarity. 9.5. Change-points in time series. 9.6. Exercises This book presents a unified approach on nonparametric estimators for models of independent observations, jump processes and continuous processes. New estimators are defined and their limiting behavior is studied. From a practical point of view, the book expounds on the construction of estimators for functionals of processes and densities, and provides asymptotic expansions and optimality properties from smooth estimators. It also presents new regular estimators for functionals of processes, compares histogram and kernel estimators, compares several new estimators for single-index models, and it examines the weak convergence of the estimators |
Beschreibung: | 1 Online-Ressource (ix, 199 p.) |
ISBN: | 9789814343732 9789814343749 9814343730 9814343749 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043107348 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2011 |||| o||u| ||||||eng d | ||
020 | |a 9789814343732 |9 978-981-4343-73-2 | ||
020 | |a 9789814343749 |c electronic bk. |9 978-981-4343-74-9 | ||
020 | |a 9814343730 |9 981-4343-73-0 | ||
020 | |a 9814343749 |c electronic bk. |9 981-4343-74-9 | ||
035 | |a (OCoLC)754793520 | ||
035 | |a (DE-599)BVBBV043107348 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 519.544 |2 22 | |
100 | 1 | |a Pons, Odile |e Verfasser |4 aut | |
245 | 1 | 0 | |a Functional estimation for density, regression models and processes |c Odile Pons |
264 | 1 | |a Singapore |b World Scientific |c c2011 | |
300 | |a 1 Online-Ressource (ix, 199 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 191-196) and index | ||
500 | |a 1. Introduction. 1.1. Estimation of a density. 1.2. Estimation of a regression curve. 1.3. Estimation of functionals of processes. 1.4. Content of the book -- 2. Kernel estimator of a density. 2.1. Introduction. 2.2. Risks and optimal bandwidths for the kernel estimator. 2.3. Weak convergence. 2.4. Minimax and histogram estimators. 2.5. Estimation of functionals of a density. 2.6. Density of absolutely continuous distributions. 2.7. Hellinger distance between a density and its estimator. 2.8. Estimation of the density under right-censoring. 2.9. Estimation of the density of left-censored variables. 2.10. Kernel estimator for the density of a process. 2.11. Exercises -- | ||
500 | |a - 3. Kernel estimator of a regression function. 3.1. Introduction and notation. 3.2. Risks and convergence rates for the estimator. 3.3. Optimal bandwidths. 3.4. Weak convergence of the estimator. 3.5. Estimation of a regression curve by local polynomials. 3.6. Estimation in regression models with functional variance. 3.7. Estimation of the mode of a regression function. 3.8. Estimation of a regression function under censoring. 3.9. Proportional odds model. 3.10. Estimation for the regression function of processes. 3.11. Exercises -- 4. Limits for the varying bandwidths estimators. 4.1. Introduction. 4.2. Estimation of densities. 4.3. Estimation of regression functions. 4.4. Estimation for processes. 4.5. Exercises -- | ||
500 | |a - 5. Nonparametric estimation of quantiles. 5.1. Introduction. 5.2. Asymptotics for the quantile processes. 5.3. Bandwidth selection. 5.4. Estimation of the conditional density of Y given X. 5.5. Estimation of conditional quantiles for processes. 5.6. Inverse of a regression function. 5.7. Quantile function of right-censored variables. 5.8. Conditional quantiles with variable bandwidth. 5.9. Exercises -- 6. Nonparametric estimation of intensities for stochastic processes. 6.2. Introduction. 6.2. Risks and convergences for estimators of the intensity. 6.3. Risks and convergences for multiplicative intensities. 6.4. Histograms for intensity and regression functions. 6.5. Estimation of the density of duration excess. 6.6. Estimators for processes on increasing intervals. 6.7. Models with varying intensity or regression coefficients. 6.8. Progressive censoring of a random time sequence. 6.9. Exercises -- | ||
500 | |a - 7. Estimation in semi-parametric regression models. 7.1. Introduction. 7.2. Convergence of the estimators. 7.3. Nonparametric regression with a change of variables. 7.4. Exercises -- 8. Diffusion processes. 8.1. Introduction. 8.2. Estimation for continuous diffusions by discretization. 8.3. Estimation for continuous diffusion processes. 8.4. Estimation of discretely observed diffusions with jumps. 8.5. Continuous estimation for diffusions with jumps. 8.6. Transformations of a non-stationary Gaussian process. 8.7. Exercises -- 9. Applications to time series. 9.1. Nonparametric estimation of the mean. 9.2. Periodic models for time series. 9.3. Nonparametric estimation of the covariance function. 9.4. Nonparametric transformations for stationarity. 9.5. Change-points in time series. 9.6. Exercises | ||
500 | |a This book presents a unified approach on nonparametric estimators for models of independent observations, jump processes and continuous processes. New estimators are defined and their limiting behavior is studied. From a practical point of view, the book expounds on the construction of estimators for functionals of processes and densities, and provides asymptotic expansions and optimality properties from smooth estimators. It also presents new regular estimators for functionals of processes, compares histogram and kernel estimators, compares several new estimators for single-index models, and it examines the weak convergence of the estimators | ||
650 | 7 | |a MATHEMATICS / Probability & Statistics / General |2 bisacsh | |
650 | 4 | |a Estimation theory | |
650 | 4 | |a Nonparametric statistics | |
650 | 0 | 7 | |a Nichtparametrische Schätzung |0 (DE-588)4203980-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kernschätzung |0 (DE-588)4353527-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtparametrische Schätzung |0 (DE-588)4203980-0 |D s |
689 | 0 | 1 | |a Kernschätzung |0 (DE-588)4353527-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389633 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028531539 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389633 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389633 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175523293691904 |
---|---|
any_adam_object | |
author | Pons, Odile |
author_facet | Pons, Odile |
author_role | aut |
author_sort | Pons, Odile |
author_variant | o p op |
building | Verbundindex |
bvnumber | BV043107348 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)754793520 (DE-599)BVBBV043107348 |
dewey-full | 519.544 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.544 |
dewey-search | 519.544 |
dewey-sort | 3519.544 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05908nmm a2200529zc 4500</leader><controlfield tag="001">BV043107348</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814343732</subfield><subfield code="9">978-981-4343-73-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814343749</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4343-74-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814343730</subfield><subfield code="9">981-4343-73-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814343749</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4343-74-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)754793520</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043107348</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.544</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pons, Odile</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Functional estimation for density, regression models and processes</subfield><subfield code="c">Odile Pons</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 199 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 191-196) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction. 1.1. Estimation of a density. 1.2. Estimation of a regression curve. 1.3. Estimation of functionals of processes. 1.4. Content of the book -- 2. Kernel estimator of a density. 2.1. Introduction. 2.2. Risks and optimal bandwidths for the kernel estimator. 2.3. Weak convergence. 2.4. Minimax and histogram estimators. 2.5. Estimation of functionals of a density. 2.6. Density of absolutely continuous distributions. 2.7. Hellinger distance between a density and its estimator. 2.8. Estimation of the density under right-censoring. 2.9. Estimation of the density of left-censored variables. 2.10. Kernel estimator for the density of a process. 2.11. Exercises -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 3. Kernel estimator of a regression function. 3.1. Introduction and notation. 3.2. Risks and convergence rates for the estimator. 3.3. Optimal bandwidths. 3.4. Weak convergence of the estimator. 3.5. Estimation of a regression curve by local polynomials. 3.6. Estimation in regression models with functional variance. 3.7. Estimation of the mode of a regression function. 3.8. Estimation of a regression function under censoring. 3.9. Proportional odds model. 3.10. Estimation for the regression function of processes. 3.11. Exercises -- 4. Limits for the varying bandwidths estimators. 4.1. Introduction. 4.2. Estimation of densities. 4.3. Estimation of regression functions. 4.4. Estimation for processes. 4.5. Exercises -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 5. Nonparametric estimation of quantiles. 5.1. Introduction. 5.2. Asymptotics for the quantile processes. 5.3. Bandwidth selection. 5.4. Estimation of the conditional density of Y given X. 5.5. Estimation of conditional quantiles for processes. 5.6. Inverse of a regression function. 5.7. Quantile function of right-censored variables. 5.8. Conditional quantiles with variable bandwidth. 5.9. Exercises -- 6. Nonparametric estimation of intensities for stochastic processes. 6.2. Introduction. 6.2. Risks and convergences for estimators of the intensity. 6.3. Risks and convergences for multiplicative intensities. 6.4. Histograms for intensity and regression functions. 6.5. Estimation of the density of duration excess. 6.6. Estimators for processes on increasing intervals. 6.7. Models with varying intensity or regression coefficients. 6.8. Progressive censoring of a random time sequence. 6.9. Exercises -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 7. Estimation in semi-parametric regression models. 7.1. Introduction. 7.2. Convergence of the estimators. 7.3. Nonparametric regression with a change of variables. 7.4. Exercises -- 8. Diffusion processes. 8.1. Introduction. 8.2. Estimation for continuous diffusions by discretization. 8.3. Estimation for continuous diffusion processes. 8.4. Estimation of discretely observed diffusions with jumps. 8.5. Continuous estimation for diffusions with jumps. 8.6. Transformations of a non-stationary Gaussian process. 8.7. Exercises -- 9. Applications to time series. 9.1. Nonparametric estimation of the mean. 9.2. Periodic models for time series. 9.3. Nonparametric estimation of the covariance function. 9.4. Nonparametric transformations for stationarity. 9.5. Change-points in time series. 9.6. Exercises</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents a unified approach on nonparametric estimators for models of independent observations, jump processes and continuous processes. New estimators are defined and their limiting behavior is studied. From a practical point of view, the book expounds on the construction of estimators for functionals of processes and densities, and provides asymptotic expansions and optimality properties from smooth estimators. It also presents new regular estimators for functionals of processes, compares histogram and kernel estimators, compares several new estimators for single-index models, and it examines the weak convergence of the estimators</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Probability & Statistics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonparametric statistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtparametrische Schätzung</subfield><subfield code="0">(DE-588)4203980-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kernschätzung</subfield><subfield code="0">(DE-588)4353527-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtparametrische Schätzung</subfield><subfield code="0">(DE-588)4203980-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kernschätzung</subfield><subfield code="0">(DE-588)4353527-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389633</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028531539</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389633</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389633</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043107348 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:38Z |
institution | BVB |
isbn | 9789814343732 9789814343749 9814343730 9814343749 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028531539 |
oclc_num | 754793520 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (ix, 199 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific |
record_format | marc |
spelling | Pons, Odile Verfasser aut Functional estimation for density, regression models and processes Odile Pons Singapore World Scientific c2011 1 Online-Ressource (ix, 199 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (p. 191-196) and index 1. Introduction. 1.1. Estimation of a density. 1.2. Estimation of a regression curve. 1.3. Estimation of functionals of processes. 1.4. Content of the book -- 2. Kernel estimator of a density. 2.1. Introduction. 2.2. Risks and optimal bandwidths for the kernel estimator. 2.3. Weak convergence. 2.4. Minimax and histogram estimators. 2.5. Estimation of functionals of a density. 2.6. Density of absolutely continuous distributions. 2.7. Hellinger distance between a density and its estimator. 2.8. Estimation of the density under right-censoring. 2.9. Estimation of the density of left-censored variables. 2.10. Kernel estimator for the density of a process. 2.11. Exercises -- - 3. Kernel estimator of a regression function. 3.1. Introduction and notation. 3.2. Risks and convergence rates for the estimator. 3.3. Optimal bandwidths. 3.4. Weak convergence of the estimator. 3.5. Estimation of a regression curve by local polynomials. 3.6. Estimation in regression models with functional variance. 3.7. Estimation of the mode of a regression function. 3.8. Estimation of a regression function under censoring. 3.9. Proportional odds model. 3.10. Estimation for the regression function of processes. 3.11. Exercises -- 4. Limits for the varying bandwidths estimators. 4.1. Introduction. 4.2. Estimation of densities. 4.3. Estimation of regression functions. 4.4. Estimation for processes. 4.5. Exercises -- - 5. Nonparametric estimation of quantiles. 5.1. Introduction. 5.2. Asymptotics for the quantile processes. 5.3. Bandwidth selection. 5.4. Estimation of the conditional density of Y given X. 5.5. Estimation of conditional quantiles for processes. 5.6. Inverse of a regression function. 5.7. Quantile function of right-censored variables. 5.8. Conditional quantiles with variable bandwidth. 5.9. Exercises -- 6. Nonparametric estimation of intensities for stochastic processes. 6.2. Introduction. 6.2. Risks and convergences for estimators of the intensity. 6.3. Risks and convergences for multiplicative intensities. 6.4. Histograms for intensity and regression functions. 6.5. Estimation of the density of duration excess. 6.6. Estimators for processes on increasing intervals. 6.7. Models with varying intensity or regression coefficients. 6.8. Progressive censoring of a random time sequence. 6.9. Exercises -- - 7. Estimation in semi-parametric regression models. 7.1. Introduction. 7.2. Convergence of the estimators. 7.3. Nonparametric regression with a change of variables. 7.4. Exercises -- 8. Diffusion processes. 8.1. Introduction. 8.2. Estimation for continuous diffusions by discretization. 8.3. Estimation for continuous diffusion processes. 8.4. Estimation of discretely observed diffusions with jumps. 8.5. Continuous estimation for diffusions with jumps. 8.6. Transformations of a non-stationary Gaussian process. 8.7. Exercises -- 9. Applications to time series. 9.1. Nonparametric estimation of the mean. 9.2. Periodic models for time series. 9.3. Nonparametric estimation of the covariance function. 9.4. Nonparametric transformations for stationarity. 9.5. Change-points in time series. 9.6. Exercises This book presents a unified approach on nonparametric estimators for models of independent observations, jump processes and continuous processes. New estimators are defined and their limiting behavior is studied. From a practical point of view, the book expounds on the construction of estimators for functionals of processes and densities, and provides asymptotic expansions and optimality properties from smooth estimators. It also presents new regular estimators for functionals of processes, compares histogram and kernel estimators, compares several new estimators for single-index models, and it examines the weak convergence of the estimators MATHEMATICS / Probability & Statistics / General bisacsh Estimation theory Nonparametric statistics Nichtparametrische Schätzung (DE-588)4203980-0 gnd rswk-swf Kernschätzung (DE-588)4353527-6 gnd rswk-swf Nichtparametrische Schätzung (DE-588)4203980-0 s Kernschätzung (DE-588)4353527-6 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389633 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pons, Odile Functional estimation for density, regression models and processes MATHEMATICS / Probability & Statistics / General bisacsh Estimation theory Nonparametric statistics Nichtparametrische Schätzung (DE-588)4203980-0 gnd Kernschätzung (DE-588)4353527-6 gnd |
subject_GND | (DE-588)4203980-0 (DE-588)4353527-6 |
title | Functional estimation for density, regression models and processes |
title_auth | Functional estimation for density, regression models and processes |
title_exact_search | Functional estimation for density, regression models and processes |
title_full | Functional estimation for density, regression models and processes Odile Pons |
title_fullStr | Functional estimation for density, regression models and processes Odile Pons |
title_full_unstemmed | Functional estimation for density, regression models and processes Odile Pons |
title_short | Functional estimation for density, regression models and processes |
title_sort | functional estimation for density regression models and processes |
topic | MATHEMATICS / Probability & Statistics / General bisacsh Estimation theory Nonparametric statistics Nichtparametrische Schätzung (DE-588)4203980-0 gnd Kernschätzung (DE-588)4353527-6 gnd |
topic_facet | MATHEMATICS / Probability & Statistics / General Estimation theory Nonparametric statistics Nichtparametrische Schätzung Kernschätzung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389633 |
work_keys_str_mv | AT ponsodile functionalestimationfordensityregressionmodelsandprocesses |