Pseudo-Riemannian geometry, [delta]-invariants and applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
c2011
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 439-462) and indexes 1. Pseudo-Riemannian manifolds. 1.1. Symmetric bilinear forms and scalar products. 1.2. Pseudo-Riemannian manifolds. 1.3. Physical interpretations of pseudo-Riemannian manifolds. 1.4. Levi-Civita connection. 1.5. Parallel translation. 1.6. Riemann curvature tensor. 1.7. Sectional, Ricci and scalar curvatures. 1.8. Indefinite real space forms. 1.9. Lie derivative, gradient, Hessian and Laplacian. 1.10. Weyl conformal curvature tensor -- - 2. Basics on pseudo-Riemannian submanifolds. 2.1. Isometric immersions. 2.2. Cartan-Janet's and Nash's embedding theorems. 2.3. Gauss' formula and second fundamental form. 2.4. Weingarten's formula and normal connection. 2.5. Shape operator of pseudo-Riemannian submanifolds. 2.6. Fundamental equations of Gauss, Codazzi and Ricci. 2.7. Fundamental theorems of submanifolds. 2.8. A reduction theorem of Erbacher-Magid. 2.9. Two basic formulas for submanifolds in E[symbol]. 2.10. Relationship between squared mean curvature and Ricci curvature. 2.11. Relationship between shape operator and Ricci curvature. 2.12. Cartan's structure equations -- - 3. Special pseudo-Riemannian submanifolds. 3.1. Totally geodesic submanifolds. 3.2. Parallel submanifolds of (indefinite) real space forms. 3.3. Totally umbilical submanifolds. 3.4. Totally umbilical submanifolds of S[symbol] (1) and H[symbol] ( -1). 3.5. Pseudo-umbilical submanifolds of E[symbol]. 3.6. Pseudo-umbilical submanifolds of S[symbol] (1) and H[symbol] ( -1). 3.7. Minimal Lorentz surfaces in indefinite real space forms. 3.8. Marginally trapped surfaces and black holes. 3.9. Quasi-minimal surfaces in indefinite space forms -- 4. Warped products and twisted products. 4.1. Basics of warped products. 4.2. Curvature of warped products. 4.3. Warped product immersions. 4.4. Twisted products. 4.5. Double-twisted products and their characterization -- - 5. Robertson-Walker spacetimes. 5.1. Cosmology, Robertson-Walker spacetimes and Einstein's field equations. 5.2. Basic properties of Robertson-Walker spacetimes. 5.3. Totally geodesic submanifolds of RW spacetimes. 5.4. Parallel submanifolds of RW spacetimes. 5.5. Totally umbilical submanifolds of RW spacetimes. 5.6. Hypersurfaces of constant curvature in RW spacetimes. 5.7. Realization of RW spacetimes in pseudo-Euclidean spaces The first part of this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian manifolds and their non-degenerate submanifolds, only assuming from the reader some basic knowledge about manifold theory. A number of recent results on pseudo-Riemannian submanifolds are also included. The second part of this book is on [symbol]-invariants, which was introduced in the early 1990s by the author. The famous Nash embedding theorem published in 1956 was aimed for, in the hope that if Riemannian manifolds could be regarded as Riemannian submanifolds, this would then yield the opportunity to use extrinsic help. However, this hope had not been materialized as pointed out by M. Gromov in his 1985 article published in Asterisque. The main reason for this is the lack of control of the extrinsic invariants of the submanifolds by known intrinsic invariants. In order to overcome such difficulties, as well as to provide answers for an open question on minimal immersions, the author introduced in the early 1990s new types of Riemannian invariants, known as [symbol]-invariants, which are very different in nature from the classical Ricci and scalar curvatures. At the same time he was able to establish general optimal relations between [symbol]-invariants and the main extrinsic invariants. Since then many new results concerning these [symbol]-invariants have been obtained by many geometers. The second part of this book is to provide an extensive and comprehensive survey over this very active field of research done during the last two decades |
Beschreibung: | 1 Online-Ressource (xxxii, 477 p.) |
ISBN: | 9789814329637 9789814329644 9814329630 9814329649 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043106983 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2011 |||| o||u| ||||||eng d | ||
020 | |a 9789814329637 |9 978-981-4329-63-7 | ||
020 | |a 9789814329644 |c electronic bk. |9 978-981-4329-64-4 | ||
020 | |a 9814329630 |9 981-4329-63-0 | ||
020 | |a 9814329649 |c electronic bk. |9 981-4329-64-9 | ||
035 | |a (OCoLC)754793931 | ||
035 | |a (DE-599)BVBBV043106983 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 516.36 |2 22 | |
082 | 0 | |a C51 p | |
100 | 1 | |a Chen, Bang-yen |e Verfasser |4 aut | |
245 | 1 | 0 | |a Pseudo-Riemannian geometry, [delta]-invariants and applications |c Bang-Yen Chen |
246 | 1 | 3 | |a Pseudo-Riemannian geometry, d-invariants and applications |
264 | 1 | |a Singapore |b World Scientific |c c2011 | |
300 | |a 1 Online-Ressource (xxxii, 477 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 439-462) and indexes | ||
500 | |a 1. Pseudo-Riemannian manifolds. 1.1. Symmetric bilinear forms and scalar products. 1.2. Pseudo-Riemannian manifolds. 1.3. Physical interpretations of pseudo-Riemannian manifolds. 1.4. Levi-Civita connection. 1.5. Parallel translation. 1.6. Riemann curvature tensor. 1.7. Sectional, Ricci and scalar curvatures. 1.8. Indefinite real space forms. 1.9. Lie derivative, gradient, Hessian and Laplacian. 1.10. Weyl conformal curvature tensor -- | ||
500 | |a - 2. Basics on pseudo-Riemannian submanifolds. 2.1. Isometric immersions. 2.2. Cartan-Janet's and Nash's embedding theorems. 2.3. Gauss' formula and second fundamental form. 2.4. Weingarten's formula and normal connection. 2.5. Shape operator of pseudo-Riemannian submanifolds. 2.6. Fundamental equations of Gauss, Codazzi and Ricci. 2.7. Fundamental theorems of submanifolds. 2.8. A reduction theorem of Erbacher-Magid. 2.9. Two basic formulas for submanifolds in E[symbol]. 2.10. Relationship between squared mean curvature and Ricci curvature. 2.11. Relationship between shape operator and Ricci curvature. 2.12. Cartan's structure equations -- | ||
500 | |a - 3. Special pseudo-Riemannian submanifolds. 3.1. Totally geodesic submanifolds. 3.2. Parallel submanifolds of (indefinite) real space forms. 3.3. Totally umbilical submanifolds. 3.4. Totally umbilical submanifolds of S[symbol] (1) and H[symbol] ( -1). 3.5. Pseudo-umbilical submanifolds of E[symbol]. 3.6. Pseudo-umbilical submanifolds of S[symbol] (1) and H[symbol] ( -1). 3.7. Minimal Lorentz surfaces in indefinite real space forms. 3.8. Marginally trapped surfaces and black holes. 3.9. Quasi-minimal surfaces in indefinite space forms -- 4. Warped products and twisted products. 4.1. Basics of warped products. 4.2. Curvature of warped products. 4.3. Warped product immersions. 4.4. Twisted products. 4.5. Double-twisted products and their characterization -- | ||
500 | |a - 5. Robertson-Walker spacetimes. 5.1. Cosmology, Robertson-Walker spacetimes and Einstein's field equations. 5.2. Basic properties of Robertson-Walker spacetimes. 5.3. Totally geodesic submanifolds of RW spacetimes. 5.4. Parallel submanifolds of RW spacetimes. 5.5. Totally umbilical submanifolds of RW spacetimes. 5.6. Hypersurfaces of constant curvature in RW spacetimes. 5.7. Realization of RW spacetimes in pseudo-Euclidean spaces | ||
500 | |a The first part of this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian manifolds and their non-degenerate submanifolds, only assuming from the reader some basic knowledge about manifold theory. A number of recent results on pseudo-Riemannian submanifolds are also included. The second part of this book is on [symbol]-invariants, which was introduced in the early 1990s by the author. The famous Nash embedding theorem published in 1956 was aimed for, in the hope that if Riemannian manifolds could be regarded as Riemannian submanifolds, this would then yield the opportunity to use extrinsic help. However, this hope had not been materialized as pointed out by M. Gromov in his 1985 article published in Asterisque. The main reason for this is the lack of control of the extrinsic invariants of the submanifolds by known intrinsic invariants. In order to overcome such difficulties, as well as to provide answers for an open question on minimal immersions, the author introduced in the early 1990s new types of Riemannian invariants, known as [symbol]-invariants, which are very different in nature from the classical Ricci and scalar curvatures. At the same time he was able to establish general optimal relations between [symbol]-invariants and the main extrinsic invariants. Since then many new results concerning these [symbol]-invariants have been obtained by many geometers. The second part of this book is to provide an extensive and comprehensive survey over this very active field of research done during the last two decades | ||
650 | 7 | |a MATHEMATICS / Geometry / Differential |2 bisacsh | |
650 | 4 | |a Submanifolds | |
650 | 4 | |a Riemannian manifolds | |
650 | 4 | |a Geometry, Riemannian | |
650 | 4 | |a Invariants | |
650 | 0 | 7 | |a Untermannigfaltigkeit |0 (DE-588)4128503-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pseudo-Riemannscher Raum |0 (DE-588)4176163-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Pseudo-Riemannscher Raum |0 (DE-588)4176163-7 |D s |
689 | 0 | 1 | |a Untermannigfaltigkeit |0 (DE-588)4128503-7 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389635 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028531174 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389635 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389635 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175522643574784 |
---|---|
any_adam_object | |
author | Chen, Bang-yen |
author_facet | Chen, Bang-yen |
author_role | aut |
author_sort | Chen, Bang-yen |
author_variant | b y c byc |
building | Verbundindex |
bvnumber | BV043106983 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)754793931 (DE-599)BVBBV043106983 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 C51 p |
dewey-search | 516.36 C51 p |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06086nmm a2200565zc 4500</leader><controlfield tag="001">BV043106983</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814329637</subfield><subfield code="9">978-981-4329-63-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814329644</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4329-64-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814329630</subfield><subfield code="9">981-4329-63-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814329649</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4329-64-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)754793931</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043106983</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">C51 p</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Bang-yen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pseudo-Riemannian geometry, [delta]-invariants and applications</subfield><subfield code="c">Bang-Yen Chen</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Pseudo-Riemannian geometry, d-invariants and applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxxii, 477 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 439-462) and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Pseudo-Riemannian manifolds. 1.1. Symmetric bilinear forms and scalar products. 1.2. Pseudo-Riemannian manifolds. 1.3. Physical interpretations of pseudo-Riemannian manifolds. 1.4. Levi-Civita connection. 1.5. Parallel translation. 1.6. Riemann curvature tensor. 1.7. Sectional, Ricci and scalar curvatures. 1.8. Indefinite real space forms. 1.9. Lie derivative, gradient, Hessian and Laplacian. 1.10. Weyl conformal curvature tensor -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 2. Basics on pseudo-Riemannian submanifolds. 2.1. Isometric immersions. 2.2. Cartan-Janet's and Nash's embedding theorems. 2.3. Gauss' formula and second fundamental form. 2.4. Weingarten's formula and normal connection. 2.5. Shape operator of pseudo-Riemannian submanifolds. 2.6. Fundamental equations of Gauss, Codazzi and Ricci. 2.7. Fundamental theorems of submanifolds. 2.8. A reduction theorem of Erbacher-Magid. 2.9. Two basic formulas for submanifolds in E[symbol]. 2.10. Relationship between squared mean curvature and Ricci curvature. 2.11. Relationship between shape operator and Ricci curvature. 2.12. Cartan's structure equations -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 3. Special pseudo-Riemannian submanifolds. 3.1. Totally geodesic submanifolds. 3.2. Parallel submanifolds of (indefinite) real space forms. 3.3. Totally umbilical submanifolds. 3.4. Totally umbilical submanifolds of S[symbol] (1) and H[symbol] ( -1). 3.5. Pseudo-umbilical submanifolds of E[symbol]. 3.6. Pseudo-umbilical submanifolds of S[symbol] (1) and H[symbol] ( -1). 3.7. Minimal Lorentz surfaces in indefinite real space forms. 3.8. Marginally trapped surfaces and black holes. 3.9. Quasi-minimal surfaces in indefinite space forms -- 4. Warped products and twisted products. 4.1. Basics of warped products. 4.2. Curvature of warped products. 4.3. Warped product immersions. 4.4. Twisted products. 4.5. Double-twisted products and their characterization -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 5. Robertson-Walker spacetimes. 5.1. Cosmology, Robertson-Walker spacetimes and Einstein's field equations. 5.2. Basic properties of Robertson-Walker spacetimes. 5.3. Totally geodesic submanifolds of RW spacetimes. 5.4. Parallel submanifolds of RW spacetimes. 5.5. Totally umbilical submanifolds of RW spacetimes. 5.6. Hypersurfaces of constant curvature in RW spacetimes. 5.7. Realization of RW spacetimes in pseudo-Euclidean spaces</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The first part of this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian manifolds and their non-degenerate submanifolds, only assuming from the reader some basic knowledge about manifold theory. A number of recent results on pseudo-Riemannian submanifolds are also included. The second part of this book is on [symbol]-invariants, which was introduced in the early 1990s by the author. The famous Nash embedding theorem published in 1956 was aimed for, in the hope that if Riemannian manifolds could be regarded as Riemannian submanifolds, this would then yield the opportunity to use extrinsic help. However, this hope had not been materialized as pointed out by M. Gromov in his 1985 article published in Asterisque. The main reason for this is the lack of control of the extrinsic invariants of the submanifolds by known intrinsic invariants. In order to overcome such difficulties, as well as to provide answers for an open question on minimal immersions, the author introduced in the early 1990s new types of Riemannian invariants, known as [symbol]-invariants, which are very different in nature from the classical Ricci and scalar curvatures. At the same time he was able to establish general optimal relations between [symbol]-invariants and the main extrinsic invariants. Since then many new results concerning these [symbol]-invariants have been obtained by many geometers. The second part of this book is to provide an extensive and comprehensive survey over this very active field of research done during the last two decades</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Differential</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Submanifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannian manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Riemannian</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariants</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Untermannigfaltigkeit</subfield><subfield code="0">(DE-588)4128503-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudo-Riemannscher Raum</subfield><subfield code="0">(DE-588)4176163-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pseudo-Riemannscher Raum</subfield><subfield code="0">(DE-588)4176163-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Untermannigfaltigkeit</subfield><subfield code="0">(DE-588)4128503-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389635</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028531174</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389635</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389635</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043106983 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:38Z |
institution | BVB |
isbn | 9789814329637 9789814329644 9814329630 9814329649 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028531174 |
oclc_num | 754793931 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xxxii, 477 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific |
record_format | marc |
spelling | Chen, Bang-yen Verfasser aut Pseudo-Riemannian geometry, [delta]-invariants and applications Bang-Yen Chen Pseudo-Riemannian geometry, d-invariants and applications Singapore World Scientific c2011 1 Online-Ressource (xxxii, 477 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (p. 439-462) and indexes 1. Pseudo-Riemannian manifolds. 1.1. Symmetric bilinear forms and scalar products. 1.2. Pseudo-Riemannian manifolds. 1.3. Physical interpretations of pseudo-Riemannian manifolds. 1.4. Levi-Civita connection. 1.5. Parallel translation. 1.6. Riemann curvature tensor. 1.7. Sectional, Ricci and scalar curvatures. 1.8. Indefinite real space forms. 1.9. Lie derivative, gradient, Hessian and Laplacian. 1.10. Weyl conformal curvature tensor -- - 2. Basics on pseudo-Riemannian submanifolds. 2.1. Isometric immersions. 2.2. Cartan-Janet's and Nash's embedding theorems. 2.3. Gauss' formula and second fundamental form. 2.4. Weingarten's formula and normal connection. 2.5. Shape operator of pseudo-Riemannian submanifolds. 2.6. Fundamental equations of Gauss, Codazzi and Ricci. 2.7. Fundamental theorems of submanifolds. 2.8. A reduction theorem of Erbacher-Magid. 2.9. Two basic formulas for submanifolds in E[symbol]. 2.10. Relationship between squared mean curvature and Ricci curvature. 2.11. Relationship between shape operator and Ricci curvature. 2.12. Cartan's structure equations -- - 3. Special pseudo-Riemannian submanifolds. 3.1. Totally geodesic submanifolds. 3.2. Parallel submanifolds of (indefinite) real space forms. 3.3. Totally umbilical submanifolds. 3.4. Totally umbilical submanifolds of S[symbol] (1) and H[symbol] ( -1). 3.5. Pseudo-umbilical submanifolds of E[symbol]. 3.6. Pseudo-umbilical submanifolds of S[symbol] (1) and H[symbol] ( -1). 3.7. Minimal Lorentz surfaces in indefinite real space forms. 3.8. Marginally trapped surfaces and black holes. 3.9. Quasi-minimal surfaces in indefinite space forms -- 4. Warped products and twisted products. 4.1. Basics of warped products. 4.2. Curvature of warped products. 4.3. Warped product immersions. 4.4. Twisted products. 4.5. Double-twisted products and their characterization -- - 5. Robertson-Walker spacetimes. 5.1. Cosmology, Robertson-Walker spacetimes and Einstein's field equations. 5.2. Basic properties of Robertson-Walker spacetimes. 5.3. Totally geodesic submanifolds of RW spacetimes. 5.4. Parallel submanifolds of RW spacetimes. 5.5. Totally umbilical submanifolds of RW spacetimes. 5.6. Hypersurfaces of constant curvature in RW spacetimes. 5.7. Realization of RW spacetimes in pseudo-Euclidean spaces The first part of this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian manifolds and their non-degenerate submanifolds, only assuming from the reader some basic knowledge about manifold theory. A number of recent results on pseudo-Riemannian submanifolds are also included. The second part of this book is on [symbol]-invariants, which was introduced in the early 1990s by the author. The famous Nash embedding theorem published in 1956 was aimed for, in the hope that if Riemannian manifolds could be regarded as Riemannian submanifolds, this would then yield the opportunity to use extrinsic help. However, this hope had not been materialized as pointed out by M. Gromov in his 1985 article published in Asterisque. The main reason for this is the lack of control of the extrinsic invariants of the submanifolds by known intrinsic invariants. In order to overcome such difficulties, as well as to provide answers for an open question on minimal immersions, the author introduced in the early 1990s new types of Riemannian invariants, known as [symbol]-invariants, which are very different in nature from the classical Ricci and scalar curvatures. At the same time he was able to establish general optimal relations between [symbol]-invariants and the main extrinsic invariants. Since then many new results concerning these [symbol]-invariants have been obtained by many geometers. The second part of this book is to provide an extensive and comprehensive survey over this very active field of research done during the last two decades MATHEMATICS / Geometry / Differential bisacsh Submanifolds Riemannian manifolds Geometry, Riemannian Invariants Untermannigfaltigkeit (DE-588)4128503-7 gnd rswk-swf Pseudo-Riemannscher Raum (DE-588)4176163-7 gnd rswk-swf Pseudo-Riemannscher Raum (DE-588)4176163-7 s Untermannigfaltigkeit (DE-588)4128503-7 s DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389635 Aggregator Volltext |
spellingShingle | Chen, Bang-yen Pseudo-Riemannian geometry, [delta]-invariants and applications MATHEMATICS / Geometry / Differential bisacsh Submanifolds Riemannian manifolds Geometry, Riemannian Invariants Untermannigfaltigkeit (DE-588)4128503-7 gnd Pseudo-Riemannscher Raum (DE-588)4176163-7 gnd |
subject_GND | (DE-588)4128503-7 (DE-588)4176163-7 |
title | Pseudo-Riemannian geometry, [delta]-invariants and applications |
title_alt | Pseudo-Riemannian geometry, d-invariants and applications |
title_auth | Pseudo-Riemannian geometry, [delta]-invariants and applications |
title_exact_search | Pseudo-Riemannian geometry, [delta]-invariants and applications |
title_full | Pseudo-Riemannian geometry, [delta]-invariants and applications Bang-Yen Chen |
title_fullStr | Pseudo-Riemannian geometry, [delta]-invariants and applications Bang-Yen Chen |
title_full_unstemmed | Pseudo-Riemannian geometry, [delta]-invariants and applications Bang-Yen Chen |
title_short | Pseudo-Riemannian geometry, [delta]-invariants and applications |
title_sort | pseudo riemannian geometry delta invariants and applications |
topic | MATHEMATICS / Geometry / Differential bisacsh Submanifolds Riemannian manifolds Geometry, Riemannian Invariants Untermannigfaltigkeit (DE-588)4128503-7 gnd Pseudo-Riemannscher Raum (DE-588)4176163-7 gnd |
topic_facet | MATHEMATICS / Geometry / Differential Submanifolds Riemannian manifolds Geometry, Riemannian Invariants Untermannigfaltigkeit Pseudo-Riemannscher Raum |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389635 |
work_keys_str_mv | AT chenbangyen pseudoriemanniangeometrydeltainvariantsandapplications AT chenbangyen pseudoriemanniangeometrydinvariantsandapplications |