A primer on mapping class groups:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
2012
|
Schriftenreihe: | Princeton mathematical series
49 |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | Literaturverzeichnis Seite 447-463 |
Beschreibung: | 1 Online-Ressource (XIV, 472 Seiten) |
ISBN: | 9781400839049 1400839041 9780691147949 0691147949 |
DOI: | 10.1515/9781400839049 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043106968 | ||
003 | DE-604 | ||
005 | 20191021 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2012 |||| o||u| ||||||eng d | ||
020 | |a 9781400839049 |c electronic bk. |9 978-1-4008-3904-9 | ||
020 | |a 1400839041 |c electronic bk. |9 1-4008-3904-1 | ||
020 | |a 9780691147949 |c hardback |9 978-0-691-14794-9 | ||
020 | |a 0691147949 |c hardback |9 0-691-14794-9 | ||
024 | 7 | |a 10.1515/9781400839049 |2 doi | |
035 | |a (OCoLC)745866891 | ||
035 | |a (DE-599)BVBBV043106968 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 |a DE-83 | ||
082 | 0 | |a 512.7/4 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Farb, Benson |d 1967- |0 (DE-588)1020817828 |4 aut | |
245 | 1 | 0 | |a A primer on mapping class groups |c Benson Farb and Dan Margalit |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c 2012 | |
264 | 4 | |c © 2012 | |
300 | |a 1 Online-Ressource (XIV, 472 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Princeton mathematical series |v 49 | |
500 | |a Literaturverzeichnis Seite 447-463 | ||
505 | 8 | |a pt. 1. Mapping class groups -- pt. 2. Teichmüller space and moduli space -- pt. 3. The classification and pseudo-Anosov theory | |
505 | 8 | |a "The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. The book begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification"-- | |
650 | 4 | |a Geometry (Mathematics) | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Mappings (Mathematics) | |
650 | 4 | |a Class groups (Mathematics) | |
650 | 7 | |a MATHEMATICS / Advanced |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Geometry / Algebraic |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Number Theory |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Geometry / General |2 bisacsh | |
650 | 7 | |a Class groups (Mathematics) |2 fast | |
650 | 7 | |a Mappings (Mathematics) |2 fast | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mappings (Mathematics) | |
650 | 4 | |a Class groups (Mathematics) | |
650 | 0 | 7 | |a Teichmüller-Modulgruppe |0 (DE-588)4319741-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homöomorphismus |0 (DE-588)4352383-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Klassifikation |0 (DE-588)4030958-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Abbildung |g Mathematik |0 (DE-588)4000044-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Teichmüller-Raum |0 (DE-588)4131425-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Klassengruppe |0 (DE-588)4164018-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Teichmüller-Modulgruppe |0 (DE-588)4319741-3 |D s |
689 | 0 | 1 | |a Teichmüller-Raum |0 (DE-588)4131425-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Homöomorphismus |0 (DE-588)4352383-3 |D s |
689 | 1 | 1 | |a Klassifikation |0 (DE-588)4030958-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Abbildung |g Mathematik |0 (DE-588)4000044-8 |D s |
689 | 2 | 1 | |a Klassengruppe |0 (DE-588)4164018-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Margalit, Dan |d 1976- |0 (DE-588)1020818212 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-14794-9 |
830 | 0 | |a Princeton mathematical series |v 49 |w (DE-604)BV045898993 |9 49 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400839049 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=386959 |x Aggregator |3 Volltext |
912 | |a ZDB-23_PMS |a ZDB-4-EBA | ||
940 | 1 | |q FAW_PDA_EBA | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028531159 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804175522630991872 |
---|---|
any_adam_object | |
author | Farb, Benson 1967- Margalit, Dan 1976- |
author_GND | (DE-588)1020817828 (DE-588)1020818212 |
author_facet | Farb, Benson 1967- Margalit, Dan 1976- |
author_role | aut aut |
author_sort | Farb, Benson 1967- |
author_variant | b f bf d m dm |
building | Verbundindex |
bvnumber | BV043106968 |
classification_rvk | SK 260 |
collection | ZDB-23_PMS ZDB-4-EBA |
contents | pt. 1. Mapping class groups -- pt. 2. Teichmüller space and moduli space -- pt. 3. The classification and pseudo-Anosov theory "The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. The book begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification"-- |
ctrlnum | (OCoLC)745866891 (DE-599)BVBBV043106968 |
dewey-full | 512.7/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7/4 |
dewey-search | 512.7/4 |
dewey-sort | 3512.7 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400839049 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04713nmm a2200853zcb4500</leader><controlfield tag="001">BV043106968</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191021 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400839049</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-3904-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400839041</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-3904-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691147949</subfield><subfield code="c">hardback</subfield><subfield code="9">978-0-691-14794-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691147949</subfield><subfield code="c">hardback</subfield><subfield code="9">0-691-14794-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400839049</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)745866891</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043106968</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/4</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Farb, Benson</subfield><subfield code="d">1967-</subfield><subfield code="0">(DE-588)1020817828</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A primer on mapping class groups</subfield><subfield code="c">Benson Farb and Dan Margalit</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 472 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Princeton mathematical series</subfield><subfield code="v">49</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis Seite 447-463</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">pt. 1. Mapping class groups -- pt. 2. Teichmüller space and moduli space -- pt. 3. The classification and pseudo-Anosov theory</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">"The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. The book begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification"--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mappings (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Class groups (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Advanced</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Algebraic</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Number Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Class groups (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mappings (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mappings (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Class groups (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Teichmüller-Modulgruppe</subfield><subfield code="0">(DE-588)4319741-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homöomorphismus</subfield><subfield code="0">(DE-588)4352383-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abbildung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4000044-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Teichmüller-Raum</subfield><subfield code="0">(DE-588)4131425-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Klassengruppe</subfield><subfield code="0">(DE-588)4164018-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Teichmüller-Modulgruppe</subfield><subfield code="0">(DE-588)4319741-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Teichmüller-Raum</subfield><subfield code="0">(DE-588)4131425-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Homöomorphismus</subfield><subfield code="0">(DE-588)4352383-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Abbildung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4000044-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Klassengruppe</subfield><subfield code="0">(DE-588)4164018-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Margalit, Dan</subfield><subfield code="d">1976-</subfield><subfield code="0">(DE-588)1020818212</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-14794-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Princeton mathematical series</subfield><subfield code="v">49</subfield><subfield code="w">(DE-604)BV045898993</subfield><subfield code="9">49</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400839049</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=386959</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23_PMS</subfield><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028531159</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043106968 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:38Z |
institution | BVB |
isbn | 9781400839049 1400839041 9780691147949 0691147949 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028531159 |
oclc_num | 745866891 |
open_access_boolean | |
owner | DE-1046 DE-1047 DE-83 |
owner_facet | DE-1046 DE-1047 DE-83 |
physical | 1 Online-Ressource (XIV, 472 Seiten) |
psigel | ZDB-23_PMS ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Princeton University Press |
record_format | marc |
series | Princeton mathematical series |
series2 | Princeton mathematical series |
spelling | Farb, Benson 1967- (DE-588)1020817828 aut A primer on mapping class groups Benson Farb and Dan Margalit Princeton, NJ Princeton University Press 2012 © 2012 1 Online-Ressource (XIV, 472 Seiten) txt rdacontent c rdamedia cr rdacarrier Princeton mathematical series 49 Literaturverzeichnis Seite 447-463 pt. 1. Mapping class groups -- pt. 2. Teichmüller space and moduli space -- pt. 3. The classification and pseudo-Anosov theory "The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. The book begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification"-- Geometry (Mathematics) Mathematics Mappings (Mathematics) Class groups (Mathematics) MATHEMATICS / Advanced bisacsh MATHEMATICS / Topology bisacsh MATHEMATICS / Geometry / Algebraic bisacsh MATHEMATICS / Number Theory bisacsh MATHEMATICS / Geometry / General bisacsh Class groups (Mathematics) fast Mappings (Mathematics) fast Mathematik Teichmüller-Modulgruppe (DE-588)4319741-3 gnd rswk-swf Homöomorphismus (DE-588)4352383-3 gnd rswk-swf Klassifikation (DE-588)4030958-7 gnd rswk-swf Abbildung Mathematik (DE-588)4000044-8 gnd rswk-swf Teichmüller-Raum (DE-588)4131425-6 gnd rswk-swf Klassengruppe (DE-588)4164018-4 gnd rswk-swf Teichmüller-Modulgruppe (DE-588)4319741-3 s Teichmüller-Raum (DE-588)4131425-6 s 1\p DE-604 Homöomorphismus (DE-588)4352383-3 s Klassifikation (DE-588)4030958-7 s 2\p DE-604 Abbildung Mathematik (DE-588)4000044-8 s Klassengruppe (DE-588)4164018-4 s 3\p DE-604 Margalit, Dan 1976- (DE-588)1020818212 aut Erscheint auch als Druck-Ausgabe 978-0-691-14794-9 Princeton mathematical series 49 (DE-604)BV045898993 49 https://doi.org/10.1515/9781400839049 Verlag URL des Erstveröffentlichers Volltext http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=386959 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Farb, Benson 1967- Margalit, Dan 1976- A primer on mapping class groups Princeton mathematical series pt. 1. Mapping class groups -- pt. 2. Teichmüller space and moduli space -- pt. 3. The classification and pseudo-Anosov theory "The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. The book begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification"-- Geometry (Mathematics) Mathematics Mappings (Mathematics) Class groups (Mathematics) MATHEMATICS / Advanced bisacsh MATHEMATICS / Topology bisacsh MATHEMATICS / Geometry / Algebraic bisacsh MATHEMATICS / Number Theory bisacsh MATHEMATICS / Geometry / General bisacsh Class groups (Mathematics) fast Mappings (Mathematics) fast Mathematik Teichmüller-Modulgruppe (DE-588)4319741-3 gnd Homöomorphismus (DE-588)4352383-3 gnd Klassifikation (DE-588)4030958-7 gnd Abbildung Mathematik (DE-588)4000044-8 gnd Teichmüller-Raum (DE-588)4131425-6 gnd Klassengruppe (DE-588)4164018-4 gnd |
subject_GND | (DE-588)4319741-3 (DE-588)4352383-3 (DE-588)4030958-7 (DE-588)4000044-8 (DE-588)4131425-6 (DE-588)4164018-4 |
title | A primer on mapping class groups |
title_auth | A primer on mapping class groups |
title_exact_search | A primer on mapping class groups |
title_full | A primer on mapping class groups Benson Farb and Dan Margalit |
title_fullStr | A primer on mapping class groups Benson Farb and Dan Margalit |
title_full_unstemmed | A primer on mapping class groups Benson Farb and Dan Margalit |
title_short | A primer on mapping class groups |
title_sort | a primer on mapping class groups |
topic | Geometry (Mathematics) Mathematics Mappings (Mathematics) Class groups (Mathematics) MATHEMATICS / Advanced bisacsh MATHEMATICS / Topology bisacsh MATHEMATICS / Geometry / Algebraic bisacsh MATHEMATICS / Number Theory bisacsh MATHEMATICS / Geometry / General bisacsh Class groups (Mathematics) fast Mappings (Mathematics) fast Mathematik Teichmüller-Modulgruppe (DE-588)4319741-3 gnd Homöomorphismus (DE-588)4352383-3 gnd Klassifikation (DE-588)4030958-7 gnd Abbildung Mathematik (DE-588)4000044-8 gnd Teichmüller-Raum (DE-588)4131425-6 gnd Klassengruppe (DE-588)4164018-4 gnd |
topic_facet | Geometry (Mathematics) Mathematics Mappings (Mathematics) Class groups (Mathematics) MATHEMATICS / Advanced MATHEMATICS / Topology MATHEMATICS / Geometry / Algebraic MATHEMATICS / Number Theory MATHEMATICS / Geometry / General Mathematik Teichmüller-Modulgruppe Homöomorphismus Klassifikation Abbildung Mathematik Teichmüller-Raum Klassengruppe |
url | https://doi.org/10.1515/9781400839049 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=386959 |
volume_link | (DE-604)BV045898993 |
work_keys_str_mv | AT farbbenson aprimeronmappingclassgroups AT margalitdan aprimeronmappingclassgroups |