Navier-Stokes equations in planar domains:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Imperial College Press
c2013
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 287-297) and index Pt. I. Basic theory. 1. Introduction. 1.1. Functional notation -- 2. Existence and uniqueness of smooth solutions. 2.1. The linear convection-diffusion equation. 2.2. Proof of theorem 2.1. 2.3. Existence and uniqueness in Hölder spaces. 2.4. Notes for chapter 2 -- 3. Estimates for smooth solutions. 3.1. Estimates involving [symbol]. 3.2. Estimates involving [symbol]. 3.3. Estimating derivatives. 3.4. Notes for chapter 3 -- 4. Extension of the solution operator. 4.1. An intermediate extension. 4.2. Extension to initial vorticity in [symbol]. 4.3. Notes for chapter 4 -- 5. Measures as initial data. 5.1. Uniqueness for general initial measures. 5.2. Notes for chapter 5 -- 6. Asymptotic behavior for large time. 6.1. Decay estimates for large time. 6.2. Initial data with stronger spatial decay. 6.3. Stability of steady states. 6.4. Notes for chapter 6 -- - A. Some theorems from functional analysis. A.1. The Calderón-Zygmund theorem. A.2. Young's and the Hardy-Littlewood-Sobolev inequalities. A.3. The Riesz-Thorin interpolation theorem. A.4. Finite Borel measures in [symbol] and the heat kernel -- pt. II. Approximate solutions. 7. Introduction -- 8. Notation. 8.1. One-dimensional discrete setting. 8.2. Two-dimensional discrete setting -- 9. Finite difference approximation to second-order boundary-value problems. 9.1. The principle of finite difference schemes. 9.2. The three-point Laplacian. 9.3. Matrix representation of the three-point Laplacian. 9.4. Notes for chapter 9 -- - 10. From Hermitian derivative to the compact discrete biharmonic operator. 10.1. The Hermitian derivative operator. 10.2. A finite element approach to the Hermitian derivative. 10.3. The three-point biharmonic operator. 10.4. Accuracy of the three-point biharmonic operator. 10.5. Coercivity and stability properties of the three-point biharmonic operator. 10.6. Matrix representation of the three-point biharmonic operator. 10.7. Convergence analysis using the matrix representation. 10.8. Notes for chapter 10 -- 11. Polynomial approach to the discrete biharmonic operator. 11.1. The biharmonic problem in a rectangle. 11.2. The biharmonic problem in an irregular domain. 11.3. Notes for chapter 11 -- 12. Compact approximation of the Navier-Stokes equations in streamfunction formulation. 12.1. The Navier-Stokes equations in streamfunction formulation. 12.2. Discretizing the streamfunction equation. 12.3. Convergence of the scheme. 12.4. Notes for chapter 12 -- - B. Eigenfunction approach for [symbol]. B.1. Some basic properties of the equation. B.2. The discrete approximation -- 13. Fully discrete approximation of the Navier-Stokes equations. 13.1. Fourth-order approximation in space. 13.2. A time-stepping discrete scheme. 13.3. Numerical results. 13.4. Notes for chapter 13 -- 14. Numerical simulations of the driven cavity problem. 14.1. Second-order scheme for the driven cavity problem. 14.2. Fourth-order scheme for the driven cavity problem. 14.3. Double-driven cavity problem. 14.4. Notes for chapter 14 This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test problems such as "driven cavity" and "double-driven cavity". A comprehensive treatment of the mathematical theory developed in the last 15 years is elaborated, heretofore never presented in other books. It gives a detailed account of the modern compact schemes based on a "pure streamfunction" approach. In particular, a complete proof of convergence is given for the full nonlinear problem. This volume aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics |
Beschreibung: | 1 Online-Ressource (xii, 302 p.) |
ISBN: | 1848162766 9781848162754 9781848162761 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043106396 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2013 |||| o||u| ||||||eng d | ||
020 | |a 1848162766 |c electronic bk. |9 1-84816-276-6 | ||
020 | |a 9781848162754 |9 978-1-84816-275-4 | ||
020 | |a 9781848162761 |c electronic bk. |9 978-1-84816-276-1 | ||
035 | |a (OCoLC)844311053 | ||
035 | |a (DE-599)BVBBV043106396 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 532.05201515353 |2 22 | |
100 | 1 | |a Ben-Artzi, Matania |e Verfasser |4 aut | |
245 | 1 | 0 | |a Navier-Stokes equations in planar domains |c Matania Ben-Artzi, Jean-Pierre Croisille, Dalia Fishelov |
264 | 1 | |a London |b Imperial College Press |c c2013 | |
300 | |a 1 Online-Ressource (xii, 302 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 287-297) and index | ||
500 | |a Pt. I. Basic theory. 1. Introduction. 1.1. Functional notation -- 2. Existence and uniqueness of smooth solutions. 2.1. The linear convection-diffusion equation. 2.2. Proof of theorem 2.1. 2.3. Existence and uniqueness in Hölder spaces. 2.4. Notes for chapter 2 -- 3. Estimates for smooth solutions. 3.1. Estimates involving [symbol]. 3.2. Estimates involving [symbol]. 3.3. Estimating derivatives. 3.4. Notes for chapter 3 -- 4. Extension of the solution operator. 4.1. An intermediate extension. 4.2. Extension to initial vorticity in [symbol]. 4.3. Notes for chapter 4 -- 5. Measures as initial data. 5.1. Uniqueness for general initial measures. 5.2. Notes for chapter 5 -- 6. Asymptotic behavior for large time. 6.1. Decay estimates for large time. 6.2. Initial data with stronger spatial decay. 6.3. Stability of steady states. 6.4. Notes for chapter 6 -- | ||
500 | |a - A. Some theorems from functional analysis. A.1. The Calderón-Zygmund theorem. A.2. Young's and the Hardy-Littlewood-Sobolev inequalities. A.3. The Riesz-Thorin interpolation theorem. A.4. Finite Borel measures in [symbol] and the heat kernel -- pt. II. Approximate solutions. 7. Introduction -- 8. Notation. 8.1. One-dimensional discrete setting. 8.2. Two-dimensional discrete setting -- 9. Finite difference approximation to second-order boundary-value problems. 9.1. The principle of finite difference schemes. 9.2. The three-point Laplacian. 9.3. Matrix representation of the three-point Laplacian. 9.4. Notes for chapter 9 -- | ||
500 | |a - 10. From Hermitian derivative to the compact discrete biharmonic operator. 10.1. The Hermitian derivative operator. 10.2. A finite element approach to the Hermitian derivative. 10.3. The three-point biharmonic operator. 10.4. Accuracy of the three-point biharmonic operator. 10.5. Coercivity and stability properties of the three-point biharmonic operator. 10.6. Matrix representation of the three-point biharmonic operator. 10.7. Convergence analysis using the matrix representation. 10.8. Notes for chapter 10 -- 11. Polynomial approach to the discrete biharmonic operator. 11.1. The biharmonic problem in a rectangle. 11.2. The biharmonic problem in an irregular domain. 11.3. Notes for chapter 11 -- 12. Compact approximation of the Navier-Stokes equations in streamfunction formulation. 12.1. The Navier-Stokes equations in streamfunction formulation. 12.2. Discretizing the streamfunction equation. 12.3. Convergence of the scheme. 12.4. Notes for chapter 12 -- | ||
500 | |a - B. Eigenfunction approach for [symbol]. B.1. Some basic properties of the equation. B.2. The discrete approximation -- 13. Fully discrete approximation of the Navier-Stokes equations. 13.1. Fourth-order approximation in space. 13.2. A time-stepping discrete scheme. 13.3. Numerical results. 13.4. Notes for chapter 13 -- 14. Numerical simulations of the driven cavity problem. 14.1. Second-order scheme for the driven cavity problem. 14.2. Fourth-order scheme for the driven cavity problem. 14.3. Double-driven cavity problem. 14.4. Notes for chapter 14 | ||
500 | |a This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test problems such as "driven cavity" and "double-driven cavity". A comprehensive treatment of the mathematical theory developed in the last 15 years is elaborated, heretofore never presented in other books. It gives a detailed account of the modern compact schemes based on a "pure streamfunction" approach. In particular, a complete proof of convergence is given for the full nonlinear problem. This volume aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics | ||
650 | 7 | |a SCIENCE / Mechanics / Fluids |2 bisacsh | |
650 | 7 | |a Navier-Stokes equations |2 fast | |
650 | 4 | |a Navier-Stokes equations | |
650 | 0 | 7 | |a Navier-Stokes-Gleichung |0 (DE-588)4041456-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Strömungssimulation |0 (DE-588)4690080-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Navier-Stokes-Gleichung |0 (DE-588)4041456-5 |D s |
689 | 0 | 1 | |a Numerische Strömungssimulation |0 (DE-588)4690080-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Croisille, Jean-Pierre |e Sonstige |4 oth | |
700 | 1 | |a Fishelov, Dalia |e Sonstige |4 oth | |
710 | 2 | |a World Scientific (Firm) |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592580 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028530587 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592580 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592580 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175521560395776 |
---|---|
any_adam_object | |
author | Ben-Artzi, Matania |
author_facet | Ben-Artzi, Matania |
author_role | aut |
author_sort | Ben-Artzi, Matania |
author_variant | m b a mba |
building | Verbundindex |
bvnumber | BV043106396 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)844311053 (DE-599)BVBBV043106396 |
dewey-full | 532.05201515353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532.05201515353 |
dewey-search | 532.05201515353 |
dewey-sort | 3532.05201515353 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06317nmm a2200553zc 4500</leader><controlfield tag="001">BV043106396</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848162766</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-84816-276-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848162754</subfield><subfield code="9">978-1-84816-275-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848162761</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-84816-276-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)844311053</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043106396</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532.05201515353</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ben-Artzi, Matania</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Navier-Stokes equations in planar domains</subfield><subfield code="c">Matania Ben-Artzi, Jean-Pierre Croisille, Dalia Fishelov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Imperial College Press</subfield><subfield code="c">c2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 302 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 287-297) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Pt. I. Basic theory. 1. Introduction. 1.1. Functional notation -- 2. Existence and uniqueness of smooth solutions. 2.1. The linear convection-diffusion equation. 2.2. Proof of theorem 2.1. 2.3. Existence and uniqueness in Hölder spaces. 2.4. Notes for chapter 2 -- 3. Estimates for smooth solutions. 3.1. Estimates involving [symbol]. 3.2. Estimates involving [symbol]. 3.3. Estimating derivatives. 3.4. Notes for chapter 3 -- 4. Extension of the solution operator. 4.1. An intermediate extension. 4.2. Extension to initial vorticity in [symbol]. 4.3. Notes for chapter 4 -- 5. Measures as initial data. 5.1. Uniqueness for general initial measures. 5.2. Notes for chapter 5 -- 6. Asymptotic behavior for large time. 6.1. Decay estimates for large time. 6.2. Initial data with stronger spatial decay. 6.3. Stability of steady states. 6.4. Notes for chapter 6 -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - A. Some theorems from functional analysis. A.1. The Calderón-Zygmund theorem. A.2. Young's and the Hardy-Littlewood-Sobolev inequalities. A.3. The Riesz-Thorin interpolation theorem. A.4. Finite Borel measures in [symbol] and the heat kernel -- pt. II. Approximate solutions. 7. Introduction -- 8. Notation. 8.1. One-dimensional discrete setting. 8.2. Two-dimensional discrete setting -- 9. Finite difference approximation to second-order boundary-value problems. 9.1. The principle of finite difference schemes. 9.2. The three-point Laplacian. 9.3. Matrix representation of the three-point Laplacian. 9.4. Notes for chapter 9 -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 10. From Hermitian derivative to the compact discrete biharmonic operator. 10.1. The Hermitian derivative operator. 10.2. A finite element approach to the Hermitian derivative. 10.3. The three-point biharmonic operator. 10.4. Accuracy of the three-point biharmonic operator. 10.5. Coercivity and stability properties of the three-point biharmonic operator. 10.6. Matrix representation of the three-point biharmonic operator. 10.7. Convergence analysis using the matrix representation. 10.8. Notes for chapter 10 -- 11. Polynomial approach to the discrete biharmonic operator. 11.1. The biharmonic problem in a rectangle. 11.2. The biharmonic problem in an irregular domain. 11.3. Notes for chapter 11 -- 12. Compact approximation of the Navier-Stokes equations in streamfunction formulation. 12.1. The Navier-Stokes equations in streamfunction formulation. 12.2. Discretizing the streamfunction equation. 12.3. Convergence of the scheme. 12.4. Notes for chapter 12 -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - B. Eigenfunction approach for [symbol]. B.1. Some basic properties of the equation. B.2. The discrete approximation -- 13. Fully discrete approximation of the Navier-Stokes equations. 13.1. Fourth-order approximation in space. 13.2. A time-stepping discrete scheme. 13.3. Numerical results. 13.4. Notes for chapter 13 -- 14. Numerical simulations of the driven cavity problem. 14.1. Second-order scheme for the driven cavity problem. 14.2. Fourth-order scheme for the driven cavity problem. 14.3. Double-driven cavity problem. 14.4. Notes for chapter 14</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test problems such as "driven cavity" and "double-driven cavity". A comprehensive treatment of the mathematical theory developed in the last 15 years is elaborated, heretofore never presented in other books. It gives a detailed account of the modern compact schemes based on a "pure streamfunction" approach. In particular, a complete proof of convergence is given for the full nonlinear problem. This volume aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Mechanics / Fluids</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Navier-Stokes equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Navier-Stokes equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Navier-Stokes-Gleichung</subfield><subfield code="0">(DE-588)4041456-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Strömungssimulation</subfield><subfield code="0">(DE-588)4690080-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Navier-Stokes-Gleichung</subfield><subfield code="0">(DE-588)4041456-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerische Strömungssimulation</subfield><subfield code="0">(DE-588)4690080-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Croisille, Jean-Pierre</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fishelov, Dalia</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592580</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028530587</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592580</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592580</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043106396 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:37Z |
institution | BVB |
isbn | 1848162766 9781848162754 9781848162761 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028530587 |
oclc_num | 844311053 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xii, 302 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Imperial College Press |
record_format | marc |
spelling | Ben-Artzi, Matania Verfasser aut Navier-Stokes equations in planar domains Matania Ben-Artzi, Jean-Pierre Croisille, Dalia Fishelov London Imperial College Press c2013 1 Online-Ressource (xii, 302 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (p. 287-297) and index Pt. I. Basic theory. 1. Introduction. 1.1. Functional notation -- 2. Existence and uniqueness of smooth solutions. 2.1. The linear convection-diffusion equation. 2.2. Proof of theorem 2.1. 2.3. Existence and uniqueness in Hölder spaces. 2.4. Notes for chapter 2 -- 3. Estimates for smooth solutions. 3.1. Estimates involving [symbol]. 3.2. Estimates involving [symbol]. 3.3. Estimating derivatives. 3.4. Notes for chapter 3 -- 4. Extension of the solution operator. 4.1. An intermediate extension. 4.2. Extension to initial vorticity in [symbol]. 4.3. Notes for chapter 4 -- 5. Measures as initial data. 5.1. Uniqueness for general initial measures. 5.2. Notes for chapter 5 -- 6. Asymptotic behavior for large time. 6.1. Decay estimates for large time. 6.2. Initial data with stronger spatial decay. 6.3. Stability of steady states. 6.4. Notes for chapter 6 -- - A. Some theorems from functional analysis. A.1. The Calderón-Zygmund theorem. A.2. Young's and the Hardy-Littlewood-Sobolev inequalities. A.3. The Riesz-Thorin interpolation theorem. A.4. Finite Borel measures in [symbol] and the heat kernel -- pt. II. Approximate solutions. 7. Introduction -- 8. Notation. 8.1. One-dimensional discrete setting. 8.2. Two-dimensional discrete setting -- 9. Finite difference approximation to second-order boundary-value problems. 9.1. The principle of finite difference schemes. 9.2. The three-point Laplacian. 9.3. Matrix representation of the three-point Laplacian. 9.4. Notes for chapter 9 -- - 10. From Hermitian derivative to the compact discrete biharmonic operator. 10.1. The Hermitian derivative operator. 10.2. A finite element approach to the Hermitian derivative. 10.3. The three-point biharmonic operator. 10.4. Accuracy of the three-point biharmonic operator. 10.5. Coercivity and stability properties of the three-point biharmonic operator. 10.6. Matrix representation of the three-point biharmonic operator. 10.7. Convergence analysis using the matrix representation. 10.8. Notes for chapter 10 -- 11. Polynomial approach to the discrete biharmonic operator. 11.1. The biharmonic problem in a rectangle. 11.2. The biharmonic problem in an irregular domain. 11.3. Notes for chapter 11 -- 12. Compact approximation of the Navier-Stokes equations in streamfunction formulation. 12.1. The Navier-Stokes equations in streamfunction formulation. 12.2. Discretizing the streamfunction equation. 12.3. Convergence of the scheme. 12.4. Notes for chapter 12 -- - B. Eigenfunction approach for [symbol]. B.1. Some basic properties of the equation. B.2. The discrete approximation -- 13. Fully discrete approximation of the Navier-Stokes equations. 13.1. Fourth-order approximation in space. 13.2. A time-stepping discrete scheme. 13.3. Numerical results. 13.4. Notes for chapter 13 -- 14. Numerical simulations of the driven cavity problem. 14.1. Second-order scheme for the driven cavity problem. 14.2. Fourth-order scheme for the driven cavity problem. 14.3. Double-driven cavity problem. 14.4. Notes for chapter 14 This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test problems such as "driven cavity" and "double-driven cavity". A comprehensive treatment of the mathematical theory developed in the last 15 years is elaborated, heretofore never presented in other books. It gives a detailed account of the modern compact schemes based on a "pure streamfunction" approach. In particular, a complete proof of convergence is given for the full nonlinear problem. This volume aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics SCIENCE / Mechanics / Fluids bisacsh Navier-Stokes equations fast Navier-Stokes equations Navier-Stokes-Gleichung (DE-588)4041456-5 gnd rswk-swf Numerische Strömungssimulation (DE-588)4690080-9 gnd rswk-swf Navier-Stokes-Gleichung (DE-588)4041456-5 s Numerische Strömungssimulation (DE-588)4690080-9 s 1\p DE-604 Croisille, Jean-Pierre Sonstige oth Fishelov, Dalia Sonstige oth World Scientific (Firm) Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592580 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ben-Artzi, Matania Navier-Stokes equations in planar domains SCIENCE / Mechanics / Fluids bisacsh Navier-Stokes equations fast Navier-Stokes equations Navier-Stokes-Gleichung (DE-588)4041456-5 gnd Numerische Strömungssimulation (DE-588)4690080-9 gnd |
subject_GND | (DE-588)4041456-5 (DE-588)4690080-9 |
title | Navier-Stokes equations in planar domains |
title_auth | Navier-Stokes equations in planar domains |
title_exact_search | Navier-Stokes equations in planar domains |
title_full | Navier-Stokes equations in planar domains Matania Ben-Artzi, Jean-Pierre Croisille, Dalia Fishelov |
title_fullStr | Navier-Stokes equations in planar domains Matania Ben-Artzi, Jean-Pierre Croisille, Dalia Fishelov |
title_full_unstemmed | Navier-Stokes equations in planar domains Matania Ben-Artzi, Jean-Pierre Croisille, Dalia Fishelov |
title_short | Navier-Stokes equations in planar domains |
title_sort | navier stokes equations in planar domains |
topic | SCIENCE / Mechanics / Fluids bisacsh Navier-Stokes equations fast Navier-Stokes equations Navier-Stokes-Gleichung (DE-588)4041456-5 gnd Numerische Strömungssimulation (DE-588)4690080-9 gnd |
topic_facet | SCIENCE / Mechanics / Fluids Navier-Stokes equations Navier-Stokes-Gleichung Numerische Strömungssimulation |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592580 |
work_keys_str_mv | AT benartzimatania navierstokesequationsinplanardomains AT croisillejeanpierre navierstokesequationsinplanardomains AT fishelovdalia navierstokesequationsinplanardomains AT worldscientificfirm navierstokesequationsinplanardomains |