Chemical sensors, Volume 3, Solid-state devices: simulation and modeling
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
[New York, N.Y.] (222 East 46th Street, New York, NY 10017)
Momentum Press
2012
|
Schriftenreihe: | Sensor technology series
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Title from PDF t.p. (viewed on October 28, 2012) Includes bibliographical references and index Preface -- About the editor -- Contributors -- 1. Molecular modeling: application to hydrogen interaction with carbon-supported transition metal systems / Samir H. Mushrif, Gilles H. Peslherbe, Alejandro D. Rey -- 1. Introduction -- 2. Molecular modeling methods -- 2.1 Molecular mechanics -- 2.2 Electronic structure theory -- 2.3 Density functional theory -- 2.4 Plane-wave pseudo-potential methods -- 2.5 Optimization techniques -- 3. Modeling hydrogen interaction with doped transition metal carbon materials using Car-Parrinello molecular dynamics and metadynamics -- 3.1 Dissociative chemisorption -- 3.2 Spillover and migration of hydrogen -- 4. Summary -- References -- 2. Surface modification of diamond for chemical sensor applications: simulation and modeling / Karin Larsson -- 1. Introduction -- 2. Factors influencing surface reactivity -- 3. Diamond as a sensor material -- 3.1 Background -- 3.2 Electrochemical properties of diamond surfaces -- 4. Theory and methodology -- 4.1 Density functional theory -- 4.2 Force-field methods -- 5. Diamond surface chemistry -- 5.1 Electron transfer from an H-terminated diamond (100) surface to an atmospheric water adlayer; a quantum mechanical study -- 5.2 Effect of partial termination with oxygen-containing species on the electron-transfer processes -- 5.3 The energetic possibility to completely oxygen-terminate a diamond surface -- 5.4 Effect on electron-transfer processes of complete termination with oxygen-containing species -- 5.5 Biosensing -- 5.6 Simulation of the pluronic F108 adsorption layer on F-, H-, O-, and OH-terminated NCD surfaces -- References -- 3. General approach to design and modeling of nanostructure-modified semiconductor and nanowire interfaces for sensor and microreactor applications / J. L. Gole, W. Laminack -- 1. Introduction: the IHSAB model for porous silicon sensors and microreactors -- 2. The interface on extrinsic semiconductors -- 3. The IHSAB concept as the basis for nanostructure-directed physisorption (electron transduction) at sensor interfaces -- 4. The extrinsic semiconductor framework -- 5. Physisorption (electron transduction) and the response of a nanostructure-modified sensor platform -- 6. The underlying IHSAB principle -- 7. Application to nanowire configurations -- 8. Application to additional semiconductors -- 9. Time-varying operation and false-positives; sensing in an unsaturated mode -- 10. Sensor rejuvenation -- 11. Summary of sensor attributes -- 12. Extension to phytocatalysis-enhanced system -- 13. Mixed gas format -- 14. Comparison to alternative technologies -- 15. Chemisorption and the analog of the HSAB principle -- 16. Physisorption (electron transduction) versus chemisorption -- 17. Outlook -- Acknowledgments -- References -- 4. Detection mechanisms and physico-chemical models of solid-state humidity sensors / V.K. Khanna -- 1. Introduction -- 2. Humidity-sensitive materials -- 3. Resistive and capacitive humidity-sensing configurations, and other structures -- 4. Equivalent circuit modeling of humidity sensors -- 5. General approaches to the formulation of humidity sensor models -- 6. Theories of adsorption of water on the surfaces of solids -- 6.1 Hydroxylation of the surface by chemisorption of water -- 6.2 Mono- and multilayer physisorption and Brunauer-Emmett-Teller (BET) theory -- 6.3 Capillary condensation of water vapor -- 7. Modeling the kinetics of diffusion of water in solids -- 8. Surface conduction mechanisms on solids and humidity- induced surface conductivity modulation -- 9. Dielectric properties of solids containing adsorbed water -- 9.1 The modified Clausius-Mosotti equation in the presence of moisture -- 9.2 Maxwell-Wagner effect in heterogeneous binary systems -- - 9.3 Sillars's theory for spheroidal particles sparsely distributed in an insulator -- 10. Fleming's approach: surface electrostatic field model -- 11. Theory of the porous alumina humidity sensor, and simulation of its capacitance and resistance characteristics -- 11.1 Microstructure of porous anodic alumina -- 11.2 Water vapor adsorption on porous alumina -- 11.3 Adsorption isotherm on porous alumina -- 11.4 Surface conduction mechanisms on porous alumina and their correlation with surface conductivity variation with humidity -- 11.5 Statistical distribution of humidity-dependent surface conductivity of alumina among pores -- 11.6 Response of dielectric properties of alumina to humidity changes -- 11.7 Influence of pore shape parameter [lambda] on capacitance and resistance variation -- 12. Dynamic behavior and transient response modeling of humidity sensors -- 12.1 The Tetelin-Pellet model -- 12.2 Designing a short-response-time humidity sensor structure -- - 13. Modeling the diffusion kinetics of cylindrical film and cylindrical body structures for enhanced-speed humidity sensing -- 14. Effect of ionic doping on humidity sensor performance -- 14.1 Anionic doping in Al2O3 humidity sensors -- 14.2 Alternative doping techniques -- 15. Modeling the drift and ageing of humidity sensors -- 16. Artificial neural network (ANN)-based behavioral modeling of humidity sensors -- 17. Modeling other types of humidity sensors -- 17.1 Microgravimetric humidity sensors: the Sauerbrey equation -- 17.2 Surface acoustic wave (SAW) delay-line humidity sensors using velocity and attenuation changes -- 17.3 Microcantilever stress-based humidity sensors: Stoney's formula -- 17.4 Field-effect humidity sensors -- 18. Discussion of humidity sensor models -- 19. Conclusions and outlook -- Dedication -- Acknowledgments -- References -- 5. The sensing mechanism and response simulation of the MIS hydrogen sensor / Linfeng Zhang -- 1. Introduction -- 2. Sensors and their sensing mechanisms -- 2.1 Metal-semiconductor sensors -- 2.2 Metal-semiconductor-metal sensors -- 2.3 Metal-insulator-semiconductor sensors -- 3. Gas diffusion -- 4. Kinetics of surface and interface adsorption -- 5. Simulations -- 5.1 MS sensors -- 5.2 MIS sensors -- Conclusions -- Appendix -- References -- 6. Modeling and signal processing strategies for microacoustic chemical sensors / G. Fischerauer, F. Thalmayr -- 1. Sensing principles of microacoustic chemical sensors -- 1.1 Introduction -- 1.2 Microacoustic chemical sensors -- 2. Simulation and modeling of acoustic wave propagation, excitation, and detection -- 2.1 Analytical solution to the undisturbed wave propagation problem -- 2.2 Analytical solution to the wave excitation and detection problem -- 2.3 Finite-element method -- 2.4 Equivalent-circuit models -- 3. Sensor steady-state response -- 3.1 Perturbation approaches -- 3.2 Temperature effects -- 4. Sensor dynamics -- 4.1 Linear model -- 4.2 State-space description -- 5. Sensor signal processing -- 5.1 Suppression of temperature effects -- 5.2 Signal processing based on linear analytical model -- 5.3 Wiener deconvolution -- 5.4 Kalman filter -- 5.5 Discussion of state-space-based signal processing -- 6. Summary -- 7. Nomenclature -- References -- 7. Hierarchical simulation of carbon nanotube array-based chemical sensors with acoustic pickup / V. Barkaline, A. Chashynski -- 1. Introduction -- 2. Simulation levels of nanodesign -- 3. Prototype of hierarchical simulation system for nanodesign -- 4. Continual simulation of SAW propagation in a layered medium -- 5. Structure of carbon nanotubes and adsoption properties of CNT arrays -- 5.1 Atomic structure of single- and multiwalled nanotubes -- 5.2 Quantum mechanical study of the adsorption of simple gases on carbon nanotubes -- 5.3 Molecular mechanics of physical adsorption of the individual molecules on the CNT -- 6. Simulation of a carbon nanotube array-based chemical sensor with an acoustic pickup -- 6.1 Molecular dynamics calculation of the elastic moduli of individual carbon nanotubes -- 6.2 Molecular dynamics study of distribution of adsorbed molecules in CNT array pores and calculation of acoustic parameters of CNT arrays -- 6.3 SAW phase velocity change due to molecular adsorption on CNT arrays in SAW-based chemical sensors -- 6.4 Simulation of adsorption on the "swelling" CNT array -- 7. Conclusion -- References -- 8. Microcantilever-based chemical sensors / S. Martin, G. Louarn -- 1. Introduction -- 2. Natural frequencies and normal modes of vibration -- 3. Experimental procedure -- 4. Natural frequencies of free rectangular cantilevers -- 4.1 Analytical calculations -- 4.2 Simulation with finite-element method -- 4.3 Experimental and modelling results on a rectangular beam -- 5. Natural frequencies of V-shaped microcantilevers -- 6. Natural frequencies of V-shaped coated cantilevers -- 7. Conclusion and prospects -- 8. Acknowledgments -- References -- 9. Modeling of micromachined thermoelectric gas sensors / S. Udina, M. Carmona, C. Calaza -- 1. Principles of MTGS modeling -- 1.1 Introduction to the theory of heat transfer -- 1.2 Key thermal contributions and parameters involved in sensor operation and modeling -- 1.3 Influence of the packaging -- 2. Modeling and simulation methods -- 2.1 Complexity model levels -- 2.2 Analytical models -- 2.3 Finite-element method -- 2.4 Thermal conductivity of gases -- 3. Application to thermoelectric gas sensors -- 3.1 Case study -- 3.2 Analytical model -- 3.3 Static FEM -- 3.4 Dynamic FEM -- 3.5 Device optimization -- Acknowledgments -- Nomenclature -- References -- 10. Modeling, simulation, and information processing for development of a polymeric electronic nose system / R. D. S. Yadava -- 1. Introduction -- 2. Sensor array approach -- 2.1 System characteristics -- 2.2 Sensing platform and system design -- 3. Sensor transient approach -- 4. Design and modeling of SAW sensing platform -- 4.1 Generic sensor model -- 4.2 Designing a SAW platform for mass sensitivity -- 4.3 Designing a SAW platform for multifrequency sensing -- 5. Vapor solvation, diffusion, and polymer loading -- 5.1 Solvation model and data processing -- 5.2 Sorption kinetics and transient signal model -- 6. Data mining and simulation for polymer selection -- 6.1 Case study of explosive vapor detection -- 6.2 Case study of body-odor detection -- 7. Optimizing data processing methods -- 7.1 Transient signal analysis -- 7.2 Steady-state sensor array response analysis -- 7.3 Enhancing sensor intelligence by information fusion -- 7.4 Simultaneous recognition and quantitation -- 8. Conclusion -- Acknowledgments -- References -- Index This is the third of a new five-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields of chemical sensing and the important applications for chemical sensing such as bulk and surface diffusion, adsorption, surface reactions, sintering, conductivity, mass transport, and interphase interactions |
Beschreibung: | 1 electronic text (xxi, 517 p.) |
ISBN: | 1606503170 9781606503171 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043105989 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2012 |||| o||u| ||||||eng d | ||
020 | |a 1606503170 |c electronic bk. |9 1-60650-317-0 | ||
020 | |a 9781606503171 |c electronic bk. |9 978-1-60650-317-1 | ||
035 | |a (OCoLC)815248314 | ||
035 | |a (DE-599)BVBBV043105989 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 681.2 |2 23 | |
245 | 1 | 0 | |a Chemical sensors, Volume 3, Solid-state devices |b simulation and modeling |c edited by Ghenadii Korotcenkov |
246 | 1 | 3 | |a Simulation and modeling |
246 | 1 | 3 | |a Solid-state devices |
264 | 1 | |a [New York, N.Y.] (222 East 46th Street, New York, NY 10017) |b Momentum Press |c 2012 | |
300 | |a 1 electronic text (xxi, 517 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Sensor technology series | |
500 | |a Title from PDF t.p. (viewed on October 28, 2012) | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Preface -- About the editor -- Contributors -- | ||
500 | |a 1. Molecular modeling: application to hydrogen interaction with carbon-supported transition metal systems / Samir H. Mushrif, Gilles H. Peslherbe, Alejandro D. Rey -- 1. Introduction -- 2. Molecular modeling methods -- 2.1 Molecular mechanics -- 2.2 Electronic structure theory -- 2.3 Density functional theory -- 2.4 Plane-wave pseudo-potential methods -- 2.5 Optimization techniques -- 3. Modeling hydrogen interaction with doped transition metal carbon materials using Car-Parrinello molecular dynamics and metadynamics -- 3.1 Dissociative chemisorption -- 3.2 Spillover and migration of hydrogen -- 4. Summary -- References -- | ||
500 | |a 2. Surface modification of diamond for chemical sensor applications: simulation and modeling / Karin Larsson -- 1. Introduction -- 2. Factors influencing surface reactivity -- 3. Diamond as a sensor material -- 3.1 Background -- 3.2 Electrochemical properties of diamond surfaces -- 4. Theory and methodology -- 4.1 Density functional theory -- 4.2 Force-field methods -- 5. Diamond surface chemistry -- 5.1 Electron transfer from an H-terminated diamond (100) surface to an atmospheric water adlayer; a quantum mechanical study -- 5.2 Effect of partial termination with oxygen-containing species on the electron-transfer processes -- 5.3 The energetic possibility to completely oxygen-terminate a diamond surface -- 5.4 Effect on electron-transfer processes of complete termination with oxygen-containing species -- 5.5 Biosensing -- 5.6 Simulation of the pluronic F108 adsorption layer on F-, H-, O-, and OH-terminated NCD surfaces -- References -- | ||
500 | |a 3. General approach to design and modeling of nanostructure-modified semiconductor and nanowire interfaces for sensor and microreactor applications / J. L. Gole, W. Laminack -- 1. Introduction: the IHSAB model for porous silicon sensors and microreactors -- 2. The interface on extrinsic semiconductors -- 3. The IHSAB concept as the basis for nanostructure-directed physisorption (electron transduction) at sensor interfaces -- 4. The extrinsic semiconductor framework -- 5. Physisorption (electron transduction) and the response of a nanostructure-modified sensor platform -- 6. The underlying IHSAB principle -- 7. Application to nanowire configurations -- 8. Application to additional semiconductors -- 9. Time-varying operation and false-positives; sensing in an unsaturated mode -- 10. Sensor rejuvenation -- 11. Summary of sensor attributes -- 12. Extension to phytocatalysis-enhanced system -- 13. Mixed gas format -- 14. Comparison to alternative technologies -- 15. Chemisorption and the analog of the HSAB principle -- 16. Physisorption (electron transduction) versus chemisorption -- 17. Outlook -- Acknowledgments -- References -- | ||
500 | |a 4. Detection mechanisms and physico-chemical models of solid-state humidity sensors / V.K. Khanna -- 1. Introduction -- 2. Humidity-sensitive materials -- 3. Resistive and capacitive humidity-sensing configurations, and other structures -- 4. Equivalent circuit modeling of humidity sensors -- 5. General approaches to the formulation of humidity sensor models -- 6. Theories of adsorption of water on the surfaces of solids -- 6.1 Hydroxylation of the surface by chemisorption of water -- 6.2 Mono- and multilayer physisorption and Brunauer-Emmett-Teller (BET) theory -- 6.3 Capillary condensation of water vapor -- 7. Modeling the kinetics of diffusion of water in solids -- 8. Surface conduction mechanisms on solids and humidity- induced surface conductivity modulation -- 9. Dielectric properties of solids containing adsorbed water -- 9.1 The modified Clausius-Mosotti equation in the presence of moisture -- 9.2 Maxwell-Wagner effect in heterogeneous binary systems -- | ||
500 | |a - 9.3 Sillars's theory for spheroidal particles sparsely distributed in an insulator -- 10. Fleming's approach: surface electrostatic field model -- 11. Theory of the porous alumina humidity sensor, and simulation of its capacitance and resistance characteristics -- 11.1 Microstructure of porous anodic alumina -- 11.2 Water vapor adsorption on porous alumina -- 11.3 Adsorption isotherm on porous alumina -- 11.4 Surface conduction mechanisms on porous alumina and their correlation with surface conductivity variation with humidity -- 11.5 Statistical distribution of humidity-dependent surface conductivity of alumina among pores -- 11.6 Response of dielectric properties of alumina to humidity changes -- 11.7 Influence of pore shape parameter [lambda] on capacitance and resistance variation -- 12. Dynamic behavior and transient response modeling of humidity sensors -- 12.1 The Tetelin-Pellet model -- 12.2 Designing a short-response-time humidity sensor structure -- | ||
500 | |a - 13. Modeling the diffusion kinetics of cylindrical film and cylindrical body structures for enhanced-speed humidity sensing -- 14. Effect of ionic doping on humidity sensor performance -- 14.1 Anionic doping in Al2O3 humidity sensors -- 14.2 Alternative doping techniques -- 15. Modeling the drift and ageing of humidity sensors -- 16. Artificial neural network (ANN)-based behavioral modeling of humidity sensors -- 17. Modeling other types of humidity sensors -- 17.1 Microgravimetric humidity sensors: the Sauerbrey equation -- 17.2 Surface acoustic wave (SAW) delay-line humidity sensors using velocity and attenuation changes -- 17.3 Microcantilever stress-based humidity sensors: Stoney's formula -- 17.4 Field-effect humidity sensors -- 18. Discussion of humidity sensor models -- 19. Conclusions and outlook -- Dedication -- Acknowledgments -- References -- | ||
500 | |a 5. The sensing mechanism and response simulation of the MIS hydrogen sensor / Linfeng Zhang -- 1. Introduction -- 2. Sensors and their sensing mechanisms -- 2.1 Metal-semiconductor sensors -- 2.2 Metal-semiconductor-metal sensors -- 2.3 Metal-insulator-semiconductor sensors -- 3. Gas diffusion -- 4. Kinetics of surface and interface adsorption -- 5. Simulations -- 5.1 MS sensors -- 5.2 MIS sensors -- Conclusions -- Appendix -- References -- | ||
500 | |a 6. Modeling and signal processing strategies for microacoustic chemical sensors / G. Fischerauer, F. Thalmayr -- 1. Sensing principles of microacoustic chemical sensors -- 1.1 Introduction -- 1.2 Microacoustic chemical sensors -- 2. Simulation and modeling of acoustic wave propagation, excitation, and detection -- 2.1 Analytical solution to the undisturbed wave propagation problem -- 2.2 Analytical solution to the wave excitation and detection problem -- 2.3 Finite-element method -- 2.4 Equivalent-circuit models -- 3. Sensor steady-state response -- 3.1 Perturbation approaches -- 3.2 Temperature effects -- 4. Sensor dynamics -- 4.1 Linear model -- 4.2 State-space description -- 5. Sensor signal processing -- 5.1 Suppression of temperature effects -- 5.2 Signal processing based on linear analytical model -- 5.3 Wiener deconvolution -- 5.4 Kalman filter -- 5.5 Discussion of state-space-based signal processing -- 6. Summary -- 7. Nomenclature -- References -- | ||
500 | |a 7. Hierarchical simulation of carbon nanotube array-based chemical sensors with acoustic pickup / V. Barkaline, A. Chashynski -- 1. Introduction -- 2. Simulation levels of nanodesign -- 3. Prototype of hierarchical simulation system for nanodesign -- 4. Continual simulation of SAW propagation in a layered medium -- 5. Structure of carbon nanotubes and adsoption properties of CNT arrays -- 5.1 Atomic structure of single- and multiwalled nanotubes -- 5.2 Quantum mechanical study of the adsorption of simple gases on carbon nanotubes -- 5.3 Molecular mechanics of physical adsorption of the individual molecules on the CNT -- 6. Simulation of a carbon nanotube array-based chemical sensor with an acoustic pickup -- 6.1 Molecular dynamics calculation of the elastic moduli of individual carbon nanotubes -- 6.2 Molecular dynamics study of distribution of adsorbed molecules in CNT array pores and calculation of acoustic parameters of CNT arrays -- 6.3 SAW phase velocity change due to molecular adsorption on CNT arrays in SAW-based chemical sensors -- 6.4 Simulation of adsorption on the "swelling" CNT array -- 7. Conclusion -- References -- | ||
500 | |a 8. Microcantilever-based chemical sensors / S. Martin, G. Louarn -- 1. Introduction -- 2. Natural frequencies and normal modes of vibration -- 3. Experimental procedure -- 4. Natural frequencies of free rectangular cantilevers -- 4.1 Analytical calculations -- 4.2 Simulation with finite-element method -- 4.3 Experimental and modelling results on a rectangular beam -- 5. Natural frequencies of V-shaped microcantilevers -- 6. Natural frequencies of V-shaped coated cantilevers -- 7. Conclusion and prospects -- 8. Acknowledgments -- References -- | ||
500 | |a 9. Modeling of micromachined thermoelectric gas sensors / S. Udina, M. Carmona, C. Calaza -- 1. Principles of MTGS modeling -- 1.1 Introduction to the theory of heat transfer -- 1.2 Key thermal contributions and parameters involved in sensor operation and modeling -- 1.3 Influence of the packaging -- 2. Modeling and simulation methods -- 2.1 Complexity model levels -- 2.2 Analytical models -- 2.3 Finite-element method -- 2.4 Thermal conductivity of gases -- 3. Application to thermoelectric gas sensors -- 3.1 Case study -- 3.2 Analytical model -- 3.3 Static FEM -- 3.4 Dynamic FEM -- 3.5 Device optimization -- Acknowledgments -- Nomenclature -- References -- | ||
500 | |a 10. Modeling, simulation, and information processing for development of a polymeric electronic nose system / R. D. S. Yadava -- 1. Introduction -- 2. Sensor array approach -- 2.1 System characteristics -- 2.2 Sensing platform and system design -- 3. Sensor transient approach -- 4. Design and modeling of SAW sensing platform -- 4.1 Generic sensor model -- 4.2 Designing a SAW platform for mass sensitivity -- 4.3 Designing a SAW platform for multifrequency sensing -- 5. Vapor solvation, diffusion, and polymer loading -- 5.1 Solvation model and data processing -- 5.2 Sorption kinetics and transient signal model -- 6. Data mining and simulation for polymer selection -- 6.1 Case study of explosive vapor detection -- 6.2 Case study of body-odor detection -- 7. Optimizing data processing methods -- 7.1 Transient signal analysis -- 7.2 Steady-state sensor array response analysis -- 7.3 Enhancing sensor intelligence by information fusion -- 7.4 Simultaneous recognition and quantitation -- 8. Conclusion -- Acknowledgments -- References -- Index | ||
500 | |a This is the third of a new five-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields of chemical sensing and the important applications for chemical sensing such as bulk and surface diffusion, adsorption, surface reactions, sintering, conductivity, mass transport, and interphase interactions | ||
650 | 7 | |a TECHNOLOGY & ENGINEERING / Sensors |2 bisacsh | |
650 | 7 | |a Chemical detectors |2 fast | |
650 | 7 | |a Nanostructured materials |2 fast | |
650 | 7 | |a Solid state electronics |2 fast | |
650 | 4 | |a Chemical detectors | |
650 | 4 | |a Solid state electronics | |
650 | 4 | |a Nanostructured materials | |
700 | 1 | |a Korotchenkov, G. S. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 1-60650-315-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-60650-315-7 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=511572 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028530180 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=511572 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=511572 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175520785498112 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV043105989 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)815248314 (DE-599)BVBBV043105989 |
dewey-full | 681.2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 681 - Precision instruments and other devices |
dewey-raw | 681.2 |
dewey-search | 681.2 |
dewey-sort | 3681.2 |
dewey-tens | 680 - Manufacture of products for specific uses |
discipline | Handwerk und Gewerbe / Verschiedene Technologien |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>13110nmm a2200661zc 4500</leader><controlfield tag="001">BV043105989</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1606503170</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-60650-317-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606503171</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-60650-317-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815248314</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043105989</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">681.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chemical sensors, Volume 3, Solid-state devices</subfield><subfield code="b">simulation and modeling</subfield><subfield code="c">edited by Ghenadii Korotcenkov</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Simulation and modeling</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Solid-state devices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[New York, N.Y.] (222 East 46th Street, New York, NY 10017)</subfield><subfield code="b">Momentum Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic text (xxi, 517 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Sensor technology series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF t.p. (viewed on October 28, 2012)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface -- About the editor -- Contributors --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Molecular modeling: application to hydrogen interaction with carbon-supported transition metal systems / Samir H. Mushrif, Gilles H. Peslherbe, Alejandro D. Rey -- 1. Introduction -- 2. Molecular modeling methods -- 2.1 Molecular mechanics -- 2.2 Electronic structure theory -- 2.3 Density functional theory -- 2.4 Plane-wave pseudo-potential methods -- 2.5 Optimization techniques -- 3. Modeling hydrogen interaction with doped transition metal carbon materials using Car-Parrinello molecular dynamics and metadynamics -- 3.1 Dissociative chemisorption -- 3.2 Spillover and migration of hydrogen -- 4. Summary -- References --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2. Surface modification of diamond for chemical sensor applications: simulation and modeling / Karin Larsson -- 1. Introduction -- 2. Factors influencing surface reactivity -- 3. Diamond as a sensor material -- 3.1 Background -- 3.2 Electrochemical properties of diamond surfaces -- 4. Theory and methodology -- 4.1 Density functional theory -- 4.2 Force-field methods -- 5. Diamond surface chemistry -- 5.1 Electron transfer from an H-terminated diamond (100) surface to an atmospheric water adlayer; a quantum mechanical study -- 5.2 Effect of partial termination with oxygen-containing species on the electron-transfer processes -- 5.3 The energetic possibility to completely oxygen-terminate a diamond surface -- 5.4 Effect on electron-transfer processes of complete termination with oxygen-containing species -- 5.5 Biosensing -- 5.6 Simulation of the pluronic F108 adsorption layer on F-, H-, O-, and OH-terminated NCD surfaces -- References --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3. General approach to design and modeling of nanostructure-modified semiconductor and nanowire interfaces for sensor and microreactor applications / J. L. Gole, W. Laminack -- 1. Introduction: the IHSAB model for porous silicon sensors and microreactors -- 2. The interface on extrinsic semiconductors -- 3. The IHSAB concept as the basis for nanostructure-directed physisorption (electron transduction) at sensor interfaces -- 4. The extrinsic semiconductor framework -- 5. Physisorption (electron transduction) and the response of a nanostructure-modified sensor platform -- 6. The underlying IHSAB principle -- 7. Application to nanowire configurations -- 8. Application to additional semiconductors -- 9. Time-varying operation and false-positives; sensing in an unsaturated mode -- 10. Sensor rejuvenation -- 11. Summary of sensor attributes -- 12. Extension to phytocatalysis-enhanced system -- 13. Mixed gas format -- 14. Comparison to alternative technologies -- 15. Chemisorption and the analog of the HSAB principle -- 16. Physisorption (electron transduction) versus chemisorption -- 17. Outlook -- Acknowledgments -- References --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">4. Detection mechanisms and physico-chemical models of solid-state humidity sensors / V.K. Khanna -- 1. Introduction -- 2. Humidity-sensitive materials -- 3. Resistive and capacitive humidity-sensing configurations, and other structures -- 4. Equivalent circuit modeling of humidity sensors -- 5. General approaches to the formulation of humidity sensor models -- 6. Theories of adsorption of water on the surfaces of solids -- 6.1 Hydroxylation of the surface by chemisorption of water -- 6.2 Mono- and multilayer physisorption and Brunauer-Emmett-Teller (BET) theory -- 6.3 Capillary condensation of water vapor -- 7. Modeling the kinetics of diffusion of water in solids -- 8. Surface conduction mechanisms on solids and humidity- induced surface conductivity modulation -- 9. Dielectric properties of solids containing adsorbed water -- 9.1 The modified Clausius-Mosotti equation in the presence of moisture -- 9.2 Maxwell-Wagner effect in heterogeneous binary systems -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 9.3 Sillars's theory for spheroidal particles sparsely distributed in an insulator -- 10. Fleming's approach: surface electrostatic field model -- 11. Theory of the porous alumina humidity sensor, and simulation of its capacitance and resistance characteristics -- 11.1 Microstructure of porous anodic alumina -- 11.2 Water vapor adsorption on porous alumina -- 11.3 Adsorption isotherm on porous alumina -- 11.4 Surface conduction mechanisms on porous alumina and their correlation with surface conductivity variation with humidity -- 11.5 Statistical distribution of humidity-dependent surface conductivity of alumina among pores -- 11.6 Response of dielectric properties of alumina to humidity changes -- 11.7 Influence of pore shape parameter [lambda] on capacitance and resistance variation -- 12. Dynamic behavior and transient response modeling of humidity sensors -- 12.1 The Tetelin-Pellet model -- 12.2 Designing a short-response-time humidity sensor structure -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 13. Modeling the diffusion kinetics of cylindrical film and cylindrical body structures for enhanced-speed humidity sensing -- 14. Effect of ionic doping on humidity sensor performance -- 14.1 Anionic doping in Al2O3 humidity sensors -- 14.2 Alternative doping techniques -- 15. Modeling the drift and ageing of humidity sensors -- 16. Artificial neural network (ANN)-based behavioral modeling of humidity sensors -- 17. Modeling other types of humidity sensors -- 17.1 Microgravimetric humidity sensors: the Sauerbrey equation -- 17.2 Surface acoustic wave (SAW) delay-line humidity sensors using velocity and attenuation changes -- 17.3 Microcantilever stress-based humidity sensors: Stoney's formula -- 17.4 Field-effect humidity sensors -- 18. Discussion of humidity sensor models -- 19. Conclusions and outlook -- Dedication -- Acknowledgments -- References --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5. The sensing mechanism and response simulation of the MIS hydrogen sensor / Linfeng Zhang -- 1. Introduction -- 2. Sensors and their sensing mechanisms -- 2.1 Metal-semiconductor sensors -- 2.2 Metal-semiconductor-metal sensors -- 2.3 Metal-insulator-semiconductor sensors -- 3. Gas diffusion -- 4. Kinetics of surface and interface adsorption -- 5. Simulations -- 5.1 MS sensors -- 5.2 MIS sensors -- Conclusions -- Appendix -- References --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">6. Modeling and signal processing strategies for microacoustic chemical sensors / G. Fischerauer, F. Thalmayr -- 1. Sensing principles of microacoustic chemical sensors -- 1.1 Introduction -- 1.2 Microacoustic chemical sensors -- 2. Simulation and modeling of acoustic wave propagation, excitation, and detection -- 2.1 Analytical solution to the undisturbed wave propagation problem -- 2.2 Analytical solution to the wave excitation and detection problem -- 2.3 Finite-element method -- 2.4 Equivalent-circuit models -- 3. Sensor steady-state response -- 3.1 Perturbation approaches -- 3.2 Temperature effects -- 4. Sensor dynamics -- 4.1 Linear model -- 4.2 State-space description -- 5. Sensor signal processing -- 5.1 Suppression of temperature effects -- 5.2 Signal processing based on linear analytical model -- 5.3 Wiener deconvolution -- 5.4 Kalman filter -- 5.5 Discussion of state-space-based signal processing -- 6. Summary -- 7. Nomenclature -- References --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">7. Hierarchical simulation of carbon nanotube array-based chemical sensors with acoustic pickup / V. Barkaline, A. Chashynski -- 1. Introduction -- 2. Simulation levels of nanodesign -- 3. Prototype of hierarchical simulation system for nanodesign -- 4. Continual simulation of SAW propagation in a layered medium -- 5. Structure of carbon nanotubes and adsoption properties of CNT arrays -- 5.1 Atomic structure of single- and multiwalled nanotubes -- 5.2 Quantum mechanical study of the adsorption of simple gases on carbon nanotubes -- 5.3 Molecular mechanics of physical adsorption of the individual molecules on the CNT -- 6. Simulation of a carbon nanotube array-based chemical sensor with an acoustic pickup -- 6.1 Molecular dynamics calculation of the elastic moduli of individual carbon nanotubes -- 6.2 Molecular dynamics study of distribution of adsorbed molecules in CNT array pores and calculation of acoustic parameters of CNT arrays -- 6.3 SAW phase velocity change due to molecular adsorption on CNT arrays in SAW-based chemical sensors -- 6.4 Simulation of adsorption on the "swelling" CNT array -- 7. Conclusion -- References --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">8. Microcantilever-based chemical sensors / S. Martin, G. Louarn -- 1. Introduction -- 2. Natural frequencies and normal modes of vibration -- 3. Experimental procedure -- 4. Natural frequencies of free rectangular cantilevers -- 4.1 Analytical calculations -- 4.2 Simulation with finite-element method -- 4.3 Experimental and modelling results on a rectangular beam -- 5. Natural frequencies of V-shaped microcantilevers -- 6. Natural frequencies of V-shaped coated cantilevers -- 7. Conclusion and prospects -- 8. Acknowledgments -- References --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">9. Modeling of micromachined thermoelectric gas sensors / S. Udina, M. Carmona, C. Calaza -- 1. Principles of MTGS modeling -- 1.1 Introduction to the theory of heat transfer -- 1.2 Key thermal contributions and parameters involved in sensor operation and modeling -- 1.3 Influence of the packaging -- 2. Modeling and simulation methods -- 2.1 Complexity model levels -- 2.2 Analytical models -- 2.3 Finite-element method -- 2.4 Thermal conductivity of gases -- 3. Application to thermoelectric gas sensors -- 3.1 Case study -- 3.2 Analytical model -- 3.3 Static FEM -- 3.4 Dynamic FEM -- 3.5 Device optimization -- Acknowledgments -- Nomenclature -- References --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">10. Modeling, simulation, and information processing for development of a polymeric electronic nose system / R. D. S. Yadava -- 1. Introduction -- 2. Sensor array approach -- 2.1 System characteristics -- 2.2 Sensing platform and system design -- 3. Sensor transient approach -- 4. Design and modeling of SAW sensing platform -- 4.1 Generic sensor model -- 4.2 Designing a SAW platform for mass sensitivity -- 4.3 Designing a SAW platform for multifrequency sensing -- 5. Vapor solvation, diffusion, and polymer loading -- 5.1 Solvation model and data processing -- 5.2 Sorption kinetics and transient signal model -- 6. Data mining and simulation for polymer selection -- 6.1 Case study of explosive vapor detection -- 6.2 Case study of body-odor detection -- 7. Optimizing data processing methods -- 7.1 Transient signal analysis -- 7.2 Steady-state sensor array response analysis -- 7.3 Enhancing sensor intelligence by information fusion -- 7.4 Simultaneous recognition and quantitation -- 8. Conclusion -- Acknowledgments -- References -- Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is the third of a new five-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields of chemical sensing and the important applications for chemical sensing such as bulk and surface diffusion, adsorption, surface reactions, sintering, conductivity, mass transport, and interphase interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Sensors</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chemical detectors</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanostructured materials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solid state electronics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical detectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid state electronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Korotchenkov, G. S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">1-60650-315-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-60650-315-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=511572</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028530180</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=511572</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=511572</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043105989 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:36Z |
institution | BVB |
isbn | 1606503170 9781606503171 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028530180 |
oclc_num | 815248314 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 electronic text (xxi, 517 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Momentum Press |
record_format | marc |
series2 | Sensor technology series |
spelling | Chemical sensors, Volume 3, Solid-state devices simulation and modeling edited by Ghenadii Korotcenkov Simulation and modeling Solid-state devices [New York, N.Y.] (222 East 46th Street, New York, NY 10017) Momentum Press 2012 1 electronic text (xxi, 517 p.) txt rdacontent c rdamedia cr rdacarrier Sensor technology series Title from PDF t.p. (viewed on October 28, 2012) Includes bibliographical references and index Preface -- About the editor -- Contributors -- 1. Molecular modeling: application to hydrogen interaction with carbon-supported transition metal systems / Samir H. Mushrif, Gilles H. Peslherbe, Alejandro D. Rey -- 1. Introduction -- 2. Molecular modeling methods -- 2.1 Molecular mechanics -- 2.2 Electronic structure theory -- 2.3 Density functional theory -- 2.4 Plane-wave pseudo-potential methods -- 2.5 Optimization techniques -- 3. Modeling hydrogen interaction with doped transition metal carbon materials using Car-Parrinello molecular dynamics and metadynamics -- 3.1 Dissociative chemisorption -- 3.2 Spillover and migration of hydrogen -- 4. Summary -- References -- 2. Surface modification of diamond for chemical sensor applications: simulation and modeling / Karin Larsson -- 1. Introduction -- 2. Factors influencing surface reactivity -- 3. Diamond as a sensor material -- 3.1 Background -- 3.2 Electrochemical properties of diamond surfaces -- 4. Theory and methodology -- 4.1 Density functional theory -- 4.2 Force-field methods -- 5. Diamond surface chemistry -- 5.1 Electron transfer from an H-terminated diamond (100) surface to an atmospheric water adlayer; a quantum mechanical study -- 5.2 Effect of partial termination with oxygen-containing species on the electron-transfer processes -- 5.3 The energetic possibility to completely oxygen-terminate a diamond surface -- 5.4 Effect on electron-transfer processes of complete termination with oxygen-containing species -- 5.5 Biosensing -- 5.6 Simulation of the pluronic F108 adsorption layer on F-, H-, O-, and OH-terminated NCD surfaces -- References -- 3. General approach to design and modeling of nanostructure-modified semiconductor and nanowire interfaces for sensor and microreactor applications / J. L. Gole, W. Laminack -- 1. Introduction: the IHSAB model for porous silicon sensors and microreactors -- 2. The interface on extrinsic semiconductors -- 3. The IHSAB concept as the basis for nanostructure-directed physisorption (electron transduction) at sensor interfaces -- 4. The extrinsic semiconductor framework -- 5. Physisorption (electron transduction) and the response of a nanostructure-modified sensor platform -- 6. The underlying IHSAB principle -- 7. Application to nanowire configurations -- 8. Application to additional semiconductors -- 9. Time-varying operation and false-positives; sensing in an unsaturated mode -- 10. Sensor rejuvenation -- 11. Summary of sensor attributes -- 12. Extension to phytocatalysis-enhanced system -- 13. Mixed gas format -- 14. Comparison to alternative technologies -- 15. Chemisorption and the analog of the HSAB principle -- 16. Physisorption (electron transduction) versus chemisorption -- 17. Outlook -- Acknowledgments -- References -- 4. Detection mechanisms and physico-chemical models of solid-state humidity sensors / V.K. Khanna -- 1. Introduction -- 2. Humidity-sensitive materials -- 3. Resistive and capacitive humidity-sensing configurations, and other structures -- 4. Equivalent circuit modeling of humidity sensors -- 5. General approaches to the formulation of humidity sensor models -- 6. Theories of adsorption of water on the surfaces of solids -- 6.1 Hydroxylation of the surface by chemisorption of water -- 6.2 Mono- and multilayer physisorption and Brunauer-Emmett-Teller (BET) theory -- 6.3 Capillary condensation of water vapor -- 7. Modeling the kinetics of diffusion of water in solids -- 8. Surface conduction mechanisms on solids and humidity- induced surface conductivity modulation -- 9. Dielectric properties of solids containing adsorbed water -- 9.1 The modified Clausius-Mosotti equation in the presence of moisture -- 9.2 Maxwell-Wagner effect in heterogeneous binary systems -- - 9.3 Sillars's theory for spheroidal particles sparsely distributed in an insulator -- 10. Fleming's approach: surface electrostatic field model -- 11. Theory of the porous alumina humidity sensor, and simulation of its capacitance and resistance characteristics -- 11.1 Microstructure of porous anodic alumina -- 11.2 Water vapor adsorption on porous alumina -- 11.3 Adsorption isotherm on porous alumina -- 11.4 Surface conduction mechanisms on porous alumina and their correlation with surface conductivity variation with humidity -- 11.5 Statistical distribution of humidity-dependent surface conductivity of alumina among pores -- 11.6 Response of dielectric properties of alumina to humidity changes -- 11.7 Influence of pore shape parameter [lambda] on capacitance and resistance variation -- 12. Dynamic behavior and transient response modeling of humidity sensors -- 12.1 The Tetelin-Pellet model -- 12.2 Designing a short-response-time humidity sensor structure -- - 13. Modeling the diffusion kinetics of cylindrical film and cylindrical body structures for enhanced-speed humidity sensing -- 14. Effect of ionic doping on humidity sensor performance -- 14.1 Anionic doping in Al2O3 humidity sensors -- 14.2 Alternative doping techniques -- 15. Modeling the drift and ageing of humidity sensors -- 16. Artificial neural network (ANN)-based behavioral modeling of humidity sensors -- 17. Modeling other types of humidity sensors -- 17.1 Microgravimetric humidity sensors: the Sauerbrey equation -- 17.2 Surface acoustic wave (SAW) delay-line humidity sensors using velocity and attenuation changes -- 17.3 Microcantilever stress-based humidity sensors: Stoney's formula -- 17.4 Field-effect humidity sensors -- 18. Discussion of humidity sensor models -- 19. Conclusions and outlook -- Dedication -- Acknowledgments -- References -- 5. The sensing mechanism and response simulation of the MIS hydrogen sensor / Linfeng Zhang -- 1. Introduction -- 2. Sensors and their sensing mechanisms -- 2.1 Metal-semiconductor sensors -- 2.2 Metal-semiconductor-metal sensors -- 2.3 Metal-insulator-semiconductor sensors -- 3. Gas diffusion -- 4. Kinetics of surface and interface adsorption -- 5. Simulations -- 5.1 MS sensors -- 5.2 MIS sensors -- Conclusions -- Appendix -- References -- 6. Modeling and signal processing strategies for microacoustic chemical sensors / G. Fischerauer, F. Thalmayr -- 1. Sensing principles of microacoustic chemical sensors -- 1.1 Introduction -- 1.2 Microacoustic chemical sensors -- 2. Simulation and modeling of acoustic wave propagation, excitation, and detection -- 2.1 Analytical solution to the undisturbed wave propagation problem -- 2.2 Analytical solution to the wave excitation and detection problem -- 2.3 Finite-element method -- 2.4 Equivalent-circuit models -- 3. Sensor steady-state response -- 3.1 Perturbation approaches -- 3.2 Temperature effects -- 4. Sensor dynamics -- 4.1 Linear model -- 4.2 State-space description -- 5. Sensor signal processing -- 5.1 Suppression of temperature effects -- 5.2 Signal processing based on linear analytical model -- 5.3 Wiener deconvolution -- 5.4 Kalman filter -- 5.5 Discussion of state-space-based signal processing -- 6. Summary -- 7. Nomenclature -- References -- 7. Hierarchical simulation of carbon nanotube array-based chemical sensors with acoustic pickup / V. Barkaline, A. Chashynski -- 1. Introduction -- 2. Simulation levels of nanodesign -- 3. Prototype of hierarchical simulation system for nanodesign -- 4. Continual simulation of SAW propagation in a layered medium -- 5. Structure of carbon nanotubes and adsoption properties of CNT arrays -- 5.1 Atomic structure of single- and multiwalled nanotubes -- 5.2 Quantum mechanical study of the adsorption of simple gases on carbon nanotubes -- 5.3 Molecular mechanics of physical adsorption of the individual molecules on the CNT -- 6. Simulation of a carbon nanotube array-based chemical sensor with an acoustic pickup -- 6.1 Molecular dynamics calculation of the elastic moduli of individual carbon nanotubes -- 6.2 Molecular dynamics study of distribution of adsorbed molecules in CNT array pores and calculation of acoustic parameters of CNT arrays -- 6.3 SAW phase velocity change due to molecular adsorption on CNT arrays in SAW-based chemical sensors -- 6.4 Simulation of adsorption on the "swelling" CNT array -- 7. Conclusion -- References -- 8. Microcantilever-based chemical sensors / S. Martin, G. Louarn -- 1. Introduction -- 2. Natural frequencies and normal modes of vibration -- 3. Experimental procedure -- 4. Natural frequencies of free rectangular cantilevers -- 4.1 Analytical calculations -- 4.2 Simulation with finite-element method -- 4.3 Experimental and modelling results on a rectangular beam -- 5. Natural frequencies of V-shaped microcantilevers -- 6. Natural frequencies of V-shaped coated cantilevers -- 7. Conclusion and prospects -- 8. Acknowledgments -- References -- 9. Modeling of micromachined thermoelectric gas sensors / S. Udina, M. Carmona, C. Calaza -- 1. Principles of MTGS modeling -- 1.1 Introduction to the theory of heat transfer -- 1.2 Key thermal contributions and parameters involved in sensor operation and modeling -- 1.3 Influence of the packaging -- 2. Modeling and simulation methods -- 2.1 Complexity model levels -- 2.2 Analytical models -- 2.3 Finite-element method -- 2.4 Thermal conductivity of gases -- 3. Application to thermoelectric gas sensors -- 3.1 Case study -- 3.2 Analytical model -- 3.3 Static FEM -- 3.4 Dynamic FEM -- 3.5 Device optimization -- Acknowledgments -- Nomenclature -- References -- 10. Modeling, simulation, and information processing for development of a polymeric electronic nose system / R. D. S. Yadava -- 1. Introduction -- 2. Sensor array approach -- 2.1 System characteristics -- 2.2 Sensing platform and system design -- 3. Sensor transient approach -- 4. Design and modeling of SAW sensing platform -- 4.1 Generic sensor model -- 4.2 Designing a SAW platform for mass sensitivity -- 4.3 Designing a SAW platform for multifrequency sensing -- 5. Vapor solvation, diffusion, and polymer loading -- 5.1 Solvation model and data processing -- 5.2 Sorption kinetics and transient signal model -- 6. Data mining and simulation for polymer selection -- 6.1 Case study of explosive vapor detection -- 6.2 Case study of body-odor detection -- 7. Optimizing data processing methods -- 7.1 Transient signal analysis -- 7.2 Steady-state sensor array response analysis -- 7.3 Enhancing sensor intelligence by information fusion -- 7.4 Simultaneous recognition and quantitation -- 8. Conclusion -- Acknowledgments -- References -- Index This is the third of a new five-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields of chemical sensing and the important applications for chemical sensing such as bulk and surface diffusion, adsorption, surface reactions, sintering, conductivity, mass transport, and interphase interactions TECHNOLOGY & ENGINEERING / Sensors bisacsh Chemical detectors fast Nanostructured materials fast Solid state electronics fast Chemical detectors Solid state electronics Nanostructured materials Korotchenkov, G. S. Sonstige oth Erscheint auch als Druckausgabe 1-60650-315-4 Erscheint auch als Druckausgabe 978-1-60650-315-7 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=511572 Aggregator Volltext |
spellingShingle | Chemical sensors, Volume 3, Solid-state devices simulation and modeling TECHNOLOGY & ENGINEERING / Sensors bisacsh Chemical detectors fast Nanostructured materials fast Solid state electronics fast Chemical detectors Solid state electronics Nanostructured materials |
title | Chemical sensors, Volume 3, Solid-state devices simulation and modeling |
title_alt | Simulation and modeling Solid-state devices |
title_auth | Chemical sensors, Volume 3, Solid-state devices simulation and modeling |
title_exact_search | Chemical sensors, Volume 3, Solid-state devices simulation and modeling |
title_full | Chemical sensors, Volume 3, Solid-state devices simulation and modeling edited by Ghenadii Korotcenkov |
title_fullStr | Chemical sensors, Volume 3, Solid-state devices simulation and modeling edited by Ghenadii Korotcenkov |
title_full_unstemmed | Chemical sensors, Volume 3, Solid-state devices simulation and modeling edited by Ghenadii Korotcenkov |
title_short | Chemical sensors, Volume 3, Solid-state devices |
title_sort | chemical sensors volume 3 solid state devices simulation and modeling |
title_sub | simulation and modeling |
topic | TECHNOLOGY & ENGINEERING / Sensors bisacsh Chemical detectors fast Nanostructured materials fast Solid state electronics fast Chemical detectors Solid state electronics Nanostructured materials |
topic_facet | TECHNOLOGY & ENGINEERING / Sensors Chemical detectors Nanostructured materials Solid state electronics |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=511572 |
work_keys_str_mv | AT korotchenkovgs chemicalsensorsvolume3solidstatedevicessimulationandmodeling AT korotchenkovgs simulationandmodeling AT korotchenkovgs solidstatedevices |