Dissipative phase transitions:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Hackensack, N.J.
World Scientific
c2006
|
Schriftenreihe: | Series on advances in mathematics for applied sciences
v. 71 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references Cover -- CONTENTS -- Preface -- Mathematical models including a hysteresis operator -- 1 Introduction -- 2 Mathematical treatment for hysteresis operator -- 2.1 Play operator -- 2.2 Stop operator -- 2.3 The Duhem model -- 3 Shape memory alloys -- 4 Examples of hysteresis operator -- 4.1 Solid-liquid phase transition -- 4.2 Biological model -- 4.3 Magnetostrictive thin film multi-layers -- References -- Modelling phase transitions via an entropy equation: long-time behaviour of the solutions -- 1 Introduction -- 2 The model and the resulting PDE's system -- 3 Main results -- 4 The existence and uniqueness result -- 4.1 Proof of Theorem 5 -- 5 Uniform estimates on (0. +oo) -- 6 The w-limit -- References -- Global solution to a one dimensional phase transition model with strong dissipation -- 1 Introduction and derivation of the model -- 2 Notation and main results -- 3 Proof of Theorem 1 Phase transition phenomena arise in a variety of relevant real world situations, such as melting and freezing in a solid?liquid system, evaporation, solid?solid phase transitions in shape memory alloys, combustion, crystal growth, damage in elastic materials, glass formation, phase transitions in polymers, and plasticity. The practical interest of such phenomenology is evident and has deeply influenced the technological development of our society, stimulating intense mathematical research in this area. This book analyzes and approximates some models and related partial differential equation problems that involve phase transitions in different contexts and include dissipation effects |
Beschreibung: | 1 Online-Ressource (xii, 300 p.) |
ISBN: | 1281378887 9781281378880 9789812566508 9789812774293 9812566503 9812774297 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043104879 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2006 |||| o||u| ||||||eng d | ||
020 | |a 1281378887 |9 1-281-37888-7 | ||
020 | |a 9781281378880 |9 978-1-281-37888-0 | ||
020 | |a 9789812566508 |9 978-981-256-650-8 | ||
020 | |a 9789812774293 |c electronic bk. |9 978-981-277-429-3 | ||
020 | |a 9812566503 |c alk. paper |9 981-256-650-3 | ||
020 | |a 9812774297 |c electronic bk. |9 981-277-429-7 | ||
035 | |a (OCoLC)285162701 | ||
035 | |a (DE-599)BVBBV043104879 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.4/74 |2 22 | |
245 | 1 | 0 | |a Dissipative phase transitions |c editors, Pierluigi Colli, Nobuyuki Kenmochi, Jürgen Sprekels |
264 | 1 | |a Hackensack, N.J. |b World Scientific |c c2006 | |
300 | |a 1 Online-Ressource (xii, 300 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series on advances in mathematics for applied sciences |v v. 71 | |
500 | |a Includes bibliographical references | ||
500 | |a Cover -- CONTENTS -- Preface -- Mathematical models including a hysteresis operator -- 1 Introduction -- 2 Mathematical treatment for hysteresis operator -- 2.1 Play operator -- 2.2 Stop operator -- 2.3 The Duhem model -- 3 Shape memory alloys -- 4 Examples of hysteresis operator -- 4.1 Solid-liquid phase transition -- 4.2 Biological model -- 4.3 Magnetostrictive thin film multi-layers -- References -- Modelling phase transitions via an entropy equation: long-time behaviour of the solutions -- 1 Introduction -- 2 The model and the resulting PDE's system -- 3 Main results -- 4 The existence and uniqueness result -- 4.1 Proof of Theorem 5 -- 5 Uniform estimates on (0. +oo) -- 6 The w-limit -- References -- Global solution to a one dimensional phase transition model with strong dissipation -- 1 Introduction and derivation of the model -- 2 Notation and main results -- 3 Proof of Theorem 1 | ||
500 | |a Phase transition phenomena arise in a variety of relevant real world situations, such as melting and freezing in a solid?liquid system, evaporation, solid?solid phase transitions in shape memory alloys, combustion, crystal growth, damage in elastic materials, glass formation, phase transitions in polymers, and plasticity. The practical interest of such phenomenology is evident and has deeply influenced the technological development of our society, stimulating intense mathematical research in this area. This book analyzes and approximates some models and related partial differential equation problems that involve phase transitions in different contexts and include dissipation effects | ||
650 | 7 | |a SCIENCE / Physics / General |2 bisacsh | |
650 | 7 | |a SCIENCE / Mechanics / General |2 bisacsh | |
650 | 7 | |a SCIENCE / Energy |2 bisacsh | |
650 | 7 | |a Energy dissipation |2 fast | |
650 | 7 | |a Phase transformations (Statistical physics) |2 fast | |
650 | 7 | |a Phase transformations (Statistical physics) / Mathematical models |2 fast | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Phase transformations (Statistical physics) | |
650 | 4 | |a Phase transformations (Statistical physics) |x Mathematical models | |
650 | 4 | |a Energy dissipation | |
650 | 0 | 7 | |a Dissipation |0 (DE-588)4346728-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Phasenumwandlung |0 (DE-588)4132140-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | 1 | |a Dissipation |0 (DE-588)4346728-3 |D s |
689 | 0 | 2 | |a Phasenumwandlung |0 (DE-588)4132140-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Colli, P. |e Sonstige |4 oth | |
700 | 1 | |a Kenmochi, Nobuyuki |e Sonstige |4 oth | |
700 | 1 | |a Sprekels, J. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210571 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028529070 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210571 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210571 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175518588731392 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV043104879 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)285162701 (DE-599)BVBBV043104879 |
dewey-full | 530.4/74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.4/74 |
dewey-search | 530.4/74 |
dewey-sort | 3530.4 274 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04440nmm a2200661zcb4500</leader><controlfield tag="001">BV043104879</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281378887</subfield><subfield code="9">1-281-37888-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281378880</subfield><subfield code="9">978-1-281-37888-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812566508</subfield><subfield code="9">978-981-256-650-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812774293</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-277-429-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812566503</subfield><subfield code="c">alk. paper</subfield><subfield code="9">981-256-650-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812774297</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-277-429-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)285162701</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043104879</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.4/74</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dissipative phase transitions</subfield><subfield code="c">editors, Pierluigi Colli, Nobuyuki Kenmochi, Jürgen Sprekels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hackensack, N.J.</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 300 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series on advances in mathematics for applied sciences</subfield><subfield code="v">v. 71</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover -- CONTENTS -- Preface -- Mathematical models including a hysteresis operator -- 1 Introduction -- 2 Mathematical treatment for hysteresis operator -- 2.1 Play operator -- 2.2 Stop operator -- 2.3 The Duhem model -- 3 Shape memory alloys -- 4 Examples of hysteresis operator -- 4.1 Solid-liquid phase transition -- 4.2 Biological model -- 4.3 Magnetostrictive thin film multi-layers -- References -- Modelling phase transitions via an entropy equation: long-time behaviour of the solutions -- 1 Introduction -- 2 The model and the resulting PDE's system -- 3 Main results -- 4 The existence and uniqueness result -- 4.1 Proof of Theorem 5 -- 5 Uniform estimates on (0. +oo) -- 6 The w-limit -- References -- Global solution to a one dimensional phase transition model with strong dissipation -- 1 Introduction and derivation of the model -- 2 Notation and main results -- 3 Proof of Theorem 1</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Phase transition phenomena arise in a variety of relevant real world situations, such as melting and freezing in a solid?liquid system, evaporation, solid?solid phase transitions in shape memory alloys, combustion, crystal growth, damage in elastic materials, glass formation, phase transitions in polymers, and plasticity. The practical interest of such phenomenology is evident and has deeply influenced the technological development of our society, stimulating intense mathematical research in this area. This book analyzes and approximates some models and related partial differential equation problems that involve phase transitions in different contexts and include dissipation effects</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Mechanics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Energy</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Energy dissipation</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phase transformations (Statistical physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phase transformations (Statistical physics) / Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase transformations (Statistical physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase transformations (Statistical physics)</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy dissipation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dissipation</subfield><subfield code="0">(DE-588)4346728-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Phasenumwandlung</subfield><subfield code="0">(DE-588)4132140-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dissipation</subfield><subfield code="0">(DE-588)4346728-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Phasenumwandlung</subfield><subfield code="0">(DE-588)4132140-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Colli, P.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kenmochi, Nobuyuki</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sprekels, J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210571</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028529070</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210571</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210571</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043104879 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:34Z |
institution | BVB |
isbn | 1281378887 9781281378880 9789812566508 9789812774293 9812566503 9812774297 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028529070 |
oclc_num | 285162701 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xii, 300 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | World Scientific |
record_format | marc |
series2 | Series on advances in mathematics for applied sciences |
spelling | Dissipative phase transitions editors, Pierluigi Colli, Nobuyuki Kenmochi, Jürgen Sprekels Hackensack, N.J. World Scientific c2006 1 Online-Ressource (xii, 300 p.) txt rdacontent c rdamedia cr rdacarrier Series on advances in mathematics for applied sciences v. 71 Includes bibliographical references Cover -- CONTENTS -- Preface -- Mathematical models including a hysteresis operator -- 1 Introduction -- 2 Mathematical treatment for hysteresis operator -- 2.1 Play operator -- 2.2 Stop operator -- 2.3 The Duhem model -- 3 Shape memory alloys -- 4 Examples of hysteresis operator -- 4.1 Solid-liquid phase transition -- 4.2 Biological model -- 4.3 Magnetostrictive thin film multi-layers -- References -- Modelling phase transitions via an entropy equation: long-time behaviour of the solutions -- 1 Introduction -- 2 The model and the resulting PDE's system -- 3 Main results -- 4 The existence and uniqueness result -- 4.1 Proof of Theorem 5 -- 5 Uniform estimates on (0. +oo) -- 6 The w-limit -- References -- Global solution to a one dimensional phase transition model with strong dissipation -- 1 Introduction and derivation of the model -- 2 Notation and main results -- 3 Proof of Theorem 1 Phase transition phenomena arise in a variety of relevant real world situations, such as melting and freezing in a solid?liquid system, evaporation, solid?solid phase transitions in shape memory alloys, combustion, crystal growth, damage in elastic materials, glass formation, phase transitions in polymers, and plasticity. The practical interest of such phenomenology is evident and has deeply influenced the technological development of our society, stimulating intense mathematical research in this area. This book analyzes and approximates some models and related partial differential equation problems that involve phase transitions in different contexts and include dissipation effects SCIENCE / Physics / General bisacsh SCIENCE / Mechanics / General bisacsh SCIENCE / Energy bisacsh Energy dissipation fast Phase transformations (Statistical physics) fast Phase transformations (Statistical physics) / Mathematical models fast Mathematisches Modell Phase transformations (Statistical physics) Phase transformations (Statistical physics) Mathematical models Energy dissipation Dissipation (DE-588)4346728-3 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Phasenumwandlung (DE-588)4132140-6 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 s Dissipation (DE-588)4346728-3 s Phasenumwandlung (DE-588)4132140-6 s 1\p DE-604 Colli, P. Sonstige oth Kenmochi, Nobuyuki Sonstige oth Sprekels, J. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210571 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dissipative phase transitions SCIENCE / Physics / General bisacsh SCIENCE / Mechanics / General bisacsh SCIENCE / Energy bisacsh Energy dissipation fast Phase transformations (Statistical physics) fast Phase transformations (Statistical physics) / Mathematical models fast Mathematisches Modell Phase transformations (Statistical physics) Phase transformations (Statistical physics) Mathematical models Energy dissipation Dissipation (DE-588)4346728-3 gnd Mathematische Physik (DE-588)4037952-8 gnd Phasenumwandlung (DE-588)4132140-6 gnd |
subject_GND | (DE-588)4346728-3 (DE-588)4037952-8 (DE-588)4132140-6 |
title | Dissipative phase transitions |
title_auth | Dissipative phase transitions |
title_exact_search | Dissipative phase transitions |
title_full | Dissipative phase transitions editors, Pierluigi Colli, Nobuyuki Kenmochi, Jürgen Sprekels |
title_fullStr | Dissipative phase transitions editors, Pierluigi Colli, Nobuyuki Kenmochi, Jürgen Sprekels |
title_full_unstemmed | Dissipative phase transitions editors, Pierluigi Colli, Nobuyuki Kenmochi, Jürgen Sprekels |
title_short | Dissipative phase transitions |
title_sort | dissipative phase transitions |
topic | SCIENCE / Physics / General bisacsh SCIENCE / Mechanics / General bisacsh SCIENCE / Energy bisacsh Energy dissipation fast Phase transformations (Statistical physics) fast Phase transformations (Statistical physics) / Mathematical models fast Mathematisches Modell Phase transformations (Statistical physics) Phase transformations (Statistical physics) Mathematical models Energy dissipation Dissipation (DE-588)4346728-3 gnd Mathematische Physik (DE-588)4037952-8 gnd Phasenumwandlung (DE-588)4132140-6 gnd |
topic_facet | SCIENCE / Physics / General SCIENCE / Mechanics / General SCIENCE / Energy Energy dissipation Phase transformations (Statistical physics) Phase transformations (Statistical physics) / Mathematical models Mathematisches Modell Phase transformations (Statistical physics) Mathematical models Dissipation Mathematische Physik Phasenumwandlung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210571 |
work_keys_str_mv | AT collip dissipativephasetransitions AT kenmochinobuyuki dissipativephasetransitions AT sprekelsj dissipativephasetransitions |