Chemoinformatics approaches to virtual screening:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Cambridge, UK
Royal Society of Chemistry
c2008
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index Preface-- 1 - Fragment Descriptors in SAR/QSAR/QSPR studies, molecular similarity analysis and in virtual screening-- Introduction-- Historical survey-- Main characteristics of Fragment Descriptors-- Types of Fragments-- Simple Fixed Types-- WLN and SMILES Fragments-- Atom-Centered Fragments-- Bond-Centered Fragments-- Maximum Common Substructures-- Atom Pairs and Topological Multiplets-- Substituents and Molecular Frameworks-- Basic Subgraphs-- Mined Subgraphs-- Random Subgraphs-- Library Subgraphs-- Fragments describing supramolecular systems and chemical reactions-- Storage of fragments' information-- Fragment's Connectivity-- Generic Graphs-- Labeling Atoms-- Application in Virtual Screening and In Silico Design-- Filtering-- Similarity Search-- SAR Classification (Probabilistic) Models-- QSAR/QSPR Regression Models-- In Silico Design-- Limitations of Fragment Descriptors-- Conclusion-- 2 - Topological Pharmacophores-- Introduction-- 3D pharmacophore models and descriptors-- - Topological pharmacophores-- Topological pharmacophores from 2D-aligments-- Topological pharmacophores from 2D pharmacophore fingerprints-- Topological index-based 'pharmacophores'?-- Topological pharmacophores from 2D-aligments-- Topological pharmacophores from pharmacophore fingerprints-- Topological pharmacophore pair fingerprints-- Topological pharmacophore triplets-- Similarity searching with pharmacophore fingerprints - Technical Issues-- Similarity searching with pharmacophore fingerprints - Some Examples-- Machine-learning of Topological Pharmacophores from Fingerprints-- Topological index-based 'pharmacophores'?-- Conclusions-- 3 - Pharmacophore-based Virtual Screening in Drug Discovery-- Introduction-- Virtual Screening Methods-- Chemical Feature-based Pharmacophores-- The Term "3D Pharmacophore"-- Feature Definitions and Pharmacophore Representation-- Hydrogen bonding interactions-- Lipophilic areas-- Aromatic interactions-- Charge-transfer interactions-- - Customization and definition of new features-- Current super-positioning techniques for aligning 3D pharmacophores and molecules-- Generation and Use of Pharmacophore Models-- Ligand-based Pharmacophore Modeling-- Structure-based Pharmacophore Modeling-- Inclusion of Shape Information-- Qualitative vs. Quantitative Pharmacophore Models-- Validation of Models for Virtual Screening-- Application of Pharmacophore Models in Virtual Screening-- Pharmacophore Models as Part of a Multi-Step Screening Approach-- Antitarget and ADME(T) Screening Using Pharmacophores-- Pharmacophore Models for Activity Profiling and Parallel Virtual Screening-- Pharmacophore Method Extensions and Comparisons to Other Virtual Screening Methods-- Topological Fingerprints-- Shape-based Virtual Screening-- Docking Methods-- Pharmacophore Constraints Used in Docking-- Further Reading-- Summary and Conclusion-- 4 - Molecular Similarity Analysis in Virtual Screening-- Ligand-Based Virtual Screening-- - Foundations of Molecular Similarity Analysis-- Molecular Similarity and Chemical Spaces-- Similarity Measures-- Activity Landscapes-- Analyzing the Nature of Structure-Activity Relationships-- Relationships between different SARs-- SARs and target-ligand interactions-- Qualitative SAR characterization-- Quantitative SAR characterization-- Implications for molecular similarity analysis and virtual screening-- Strengths and Limitations of Similarity Methods-- Conclusion and Future Perspectives-- 5 - Molecular Field Topology Analysis in drug design and virtual screening-- Introduction: local molecular parameters in QSAR, drug design and virtual screening-- Supergraph-based QSAR models-- Rationale and history-- Molecular Field Topology Analysis (MFTA)-- General principles-- Local molecular descriptors: facets of ligand-biotarget interaction-- Construction of molecular supergraph-- Formation of descriptor matrix-- Statistical analysis-- Applicability control-- - From MFTA model to drug design and virtual screening-- MFTA models in biotarget and drug action analysis-- MFTA models in virtual screening-- MFTA-based virtual screening of compound databases-- MFTA-based virtual screening of generated structure libraries-- Conclusion-- 6 - Probabilistic approaches in activity prediction-- Introduction-- Biological Activity-- Dose-Effect Relationships-- Experimental Data-- Probabilistic Ligand-Based Virtual Screening Methods-- Preparation of Training Sets-- Creation of Evaluation Sets-- Mathematical Approaches-- Evaluation of Prediction Accuracy-- Single-Targeted vs. Multi-Targeted Virtual Screening-- PASS Approach-- Biological Activities Predicted by PASS-- Chemical Structure Description in PASS-- SAR Base-- Algorithm of Activity Spectrum Estimation-- Interpretation of Prediction Results-- Selection of the Most Prospective Compounds-- Conclusions-- 7 - Fragment-based de novo design of druglike molecules-- Introduction--From Molecules to Fragments-- - From Fragments to Molecules-- Scoring the Design-- Conclusions and Outlook-- 8 - Early ADME/T predictions: a toy or a tool?-- Introduction-- Which properties are important for early drug discovery?-- Physico-chemical profiling-- Lipophilicity-- Solubility-- Data availability and accuracy-- Models-- Why models don't work: the challenge of the Applicability Domain-- AD based on similarity in the descriptor space-- AD based on similarity in the property-based space-- How reliable are predictions of physico-chemical properties?-- Available Data for ADME/T biological properties-- Absorption-- Data-- Models-- Distribution-- Data-- Models-- The usefulness of ADME/T models is limited by available data-- Conclusions-- 9 - Compound Library Design - Principles and Applications-- Introduction to Compound Library Design-- Methods for Compound Library Design-- Design for Specific Biological Activities-- Similarity Guided Design of Targeted Libraries-- - Diversity Based Design of General Screening Libraries-- Pharmacophore Guided Design of Focused Compound Libraries-- QSAR Based Targeted Library Design-- Protein Structure Based Methods for Compound Library Design-- Design for Developability or Drug-likeness-- Rule & Alert Based Approaches-- QSAR Based ADMET Models-- Undesirable Functionality Filters-- Design for Multiple Objectives and Targets Simultaneously-- Concluding Remarks-- 10 - Integrated Chemo- and Bioinformatics Approaches to Virtual Screening-- Introduction-- Availability of large compound collections for virtual screening-- NIH Molecular Libraries Roadmap Initiative and the PubChem database-- Other chemical databases in public domain-- Structure based virtual screening-- Major methodologies-- Challenges and limitations of current approaches-- The implementation of cheminformatics concepts in structure based virtual screening-- Predictive QSAR models as virtual screening tools-- Critical Importance of model validation-- - Applicability domains and QSAR model acceptability criteria-- Predictive QSAR modeling workflow-- Examples of application-- Structure based chemical descriptors of protein ligand interface: the EnTESS method-- Derivation of the EnTESS descriptors-- Validation of the EnTESS descriptors for binding affinity prediction-- Structure based cheminformatics approach to virtual screening: the CoLiBRI method-- The representation of three-dimensional active sites in multidimensional chemistry space-- The mapping between chemistry spaces of active sites and ligands-- Summary and Conclusions Focuses on chemoinformatics approaches applicable to virtual screening of very large available collections of chemical compounds to identify novel biologically active molecules |
Beschreibung: | 1 Online-Ressource (xvi, 338 p.) |
ISBN: | 1847558879 9781847558879 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043104427 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2008 |||| o||u| ||||||eng d | ||
020 | |a 1847558879 |9 1-84755-887-9 | ||
020 | |a 1847558879 |c electronic bk. |9 1-84755-887-9 | ||
020 | |a 9781847558879 |c electronic bk. |9 978-1-84755-887-9 | ||
035 | |a (OCoLC)319517631 | ||
035 | |a (DE-599)BVBBV043104427 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 542.8 |2 22 | |
245 | 1 | 0 | |a Chemoinformatics approaches to virtual screening |c edited by Alexandre Varnek, Alexander Tropsha |
264 | 1 | |a Cambridge, UK |b Royal Society of Chemistry |c c2008 | |
300 | |a 1 Online-Ressource (xvi, 338 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Preface-- 1 - Fragment Descriptors in SAR/QSAR/QSPR studies, molecular similarity analysis and in virtual screening-- Introduction-- Historical survey-- Main characteristics of Fragment Descriptors-- Types of Fragments-- Simple Fixed Types-- WLN and SMILES Fragments-- Atom-Centered Fragments-- Bond-Centered Fragments-- Maximum Common Substructures-- Atom Pairs and Topological Multiplets-- Substituents and Molecular Frameworks-- Basic Subgraphs-- Mined Subgraphs-- Random Subgraphs-- Library Subgraphs-- Fragments describing supramolecular systems and chemical reactions-- Storage of fragments' information-- Fragment's Connectivity-- Generic Graphs-- Labeling Atoms-- Application in Virtual Screening and In Silico Design-- Filtering-- Similarity Search-- SAR Classification (Probabilistic) Models-- QSAR/QSPR Regression Models-- In Silico Design-- Limitations of Fragment Descriptors-- Conclusion-- 2 - Topological Pharmacophores-- Introduction-- 3D pharmacophore models and descriptors-- | ||
500 | |a - Topological pharmacophores-- Topological pharmacophores from 2D-aligments-- Topological pharmacophores from 2D pharmacophore fingerprints-- Topological index-based 'pharmacophores'?-- Topological pharmacophores from 2D-aligments-- Topological pharmacophores from pharmacophore fingerprints-- Topological pharmacophore pair fingerprints-- Topological pharmacophore triplets-- Similarity searching with pharmacophore fingerprints - Technical Issues-- Similarity searching with pharmacophore fingerprints - Some Examples-- Machine-learning of Topological Pharmacophores from Fingerprints-- Topological index-based 'pharmacophores'?-- Conclusions-- 3 - Pharmacophore-based Virtual Screening in Drug Discovery-- Introduction-- Virtual Screening Methods-- Chemical Feature-based Pharmacophores-- The Term "3D Pharmacophore"-- Feature Definitions and Pharmacophore Representation-- Hydrogen bonding interactions-- Lipophilic areas-- Aromatic interactions-- Charge-transfer interactions-- | ||
500 | |a - Customization and definition of new features-- Current super-positioning techniques for aligning 3D pharmacophores and molecules-- Generation and Use of Pharmacophore Models-- Ligand-based Pharmacophore Modeling-- Structure-based Pharmacophore Modeling-- Inclusion of Shape Information-- Qualitative vs. Quantitative Pharmacophore Models-- Validation of Models for Virtual Screening-- Application of Pharmacophore Models in Virtual Screening-- Pharmacophore Models as Part of a Multi-Step Screening Approach-- Antitarget and ADME(T) Screening Using Pharmacophores-- Pharmacophore Models for Activity Profiling and Parallel Virtual Screening-- Pharmacophore Method Extensions and Comparisons to Other Virtual Screening Methods-- Topological Fingerprints-- Shape-based Virtual Screening-- Docking Methods-- Pharmacophore Constraints Used in Docking-- Further Reading-- Summary and Conclusion-- 4 - Molecular Similarity Analysis in Virtual Screening-- Ligand-Based Virtual Screening-- | ||
500 | |a - Foundations of Molecular Similarity Analysis-- Molecular Similarity and Chemical Spaces-- Similarity Measures-- Activity Landscapes-- Analyzing the Nature of Structure-Activity Relationships-- Relationships between different SARs-- SARs and target-ligand interactions-- Qualitative SAR characterization-- Quantitative SAR characterization-- Implications for molecular similarity analysis and virtual screening-- Strengths and Limitations of Similarity Methods-- Conclusion and Future Perspectives-- 5 - Molecular Field Topology Analysis in drug design and virtual screening-- Introduction: local molecular parameters in QSAR, drug design and virtual screening-- Supergraph-based QSAR models-- Rationale and history-- Molecular Field Topology Analysis (MFTA)-- General principles-- Local molecular descriptors: facets of ligand-biotarget interaction-- Construction of molecular supergraph-- Formation of descriptor matrix-- Statistical analysis-- Applicability control-- | ||
500 | |a - From MFTA model to drug design and virtual screening-- MFTA models in biotarget and drug action analysis-- MFTA models in virtual screening-- MFTA-based virtual screening of compound databases-- MFTA-based virtual screening of generated structure libraries-- Conclusion-- 6 - Probabilistic approaches in activity prediction-- Introduction-- Biological Activity-- Dose-Effect Relationships-- Experimental Data-- Probabilistic Ligand-Based Virtual Screening Methods-- Preparation of Training Sets-- Creation of Evaluation Sets-- Mathematical Approaches-- Evaluation of Prediction Accuracy-- Single-Targeted vs. Multi-Targeted Virtual Screening-- PASS Approach-- Biological Activities Predicted by PASS-- Chemical Structure Description in PASS-- SAR Base-- Algorithm of Activity Spectrum Estimation-- Interpretation of Prediction Results-- Selection of the Most Prospective Compounds-- Conclusions-- 7 - Fragment-based de novo design of druglike molecules-- Introduction--From Molecules to Fragments-- | ||
500 | |a - From Fragments to Molecules-- Scoring the Design-- Conclusions and Outlook-- 8 - Early ADME/T predictions: a toy or a tool?-- Introduction-- Which properties are important for early drug discovery?-- Physico-chemical profiling-- Lipophilicity-- Solubility-- Data availability and accuracy-- Models-- Why models don't work: the challenge of the Applicability Domain-- AD based on similarity in the descriptor space-- AD based on similarity in the property-based space-- How reliable are predictions of physico-chemical properties?-- Available Data for ADME/T biological properties-- Absorption-- Data-- Models-- Distribution-- Data-- Models-- The usefulness of ADME/T models is limited by available data-- Conclusions-- 9 - Compound Library Design - Principles and Applications-- Introduction to Compound Library Design-- Methods for Compound Library Design-- Design for Specific Biological Activities-- Similarity Guided Design of Targeted Libraries-- | ||
500 | |a - Diversity Based Design of General Screening Libraries-- Pharmacophore Guided Design of Focused Compound Libraries-- QSAR Based Targeted Library Design-- Protein Structure Based Methods for Compound Library Design-- Design for Developability or Drug-likeness-- Rule & Alert Based Approaches-- QSAR Based ADMET Models-- Undesirable Functionality Filters-- Design for Multiple Objectives and Targets Simultaneously-- Concluding Remarks-- 10 - Integrated Chemo- and Bioinformatics Approaches to Virtual Screening-- Introduction-- Availability of large compound collections for virtual screening-- NIH Molecular Libraries Roadmap Initiative and the PubChem database-- Other chemical databases in public domain-- Structure based virtual screening-- Major methodologies-- Challenges and limitations of current approaches-- The implementation of cheminformatics concepts in structure based virtual screening-- Predictive QSAR models as virtual screening tools-- Critical Importance of model validation-- | ||
500 | |a - Applicability domains and QSAR model acceptability criteria-- Predictive QSAR modeling workflow-- Examples of application-- Structure based chemical descriptors of protein ligand interface: the EnTESS method-- Derivation of the EnTESS descriptors-- Validation of the EnTESS descriptors for binding affinity prediction-- Structure based cheminformatics approach to virtual screening: the CoLiBRI method-- The representation of three-dimensional active sites in multidimensional chemistry space-- The mapping between chemistry spaces of active sites and ligands-- Summary and Conclusions | ||
500 | |a Focuses on chemoinformatics approaches applicable to virtual screening of very large available collections of chemical compounds to identify novel biologically active molecules | ||
650 | 7 | |a Mathematics for scientists & engineers |2 bicssc | |
650 | 7 | |a Analytical chemistry |2 bicssc | |
650 | 7 | |a Science |2 eflch | |
650 | 4 | |a Mathematics for scientists & engineers | |
650 | 4 | |a Analytical chemistry | |
650 | 4 | |a Science | |
650 | 7 | |a SCIENCE / Chemistry / Clinical |2 bisacsh | |
650 | 7 | |a Cheminformatics |2 fast | |
650 | 4 | |a Chemie | |
650 | 4 | |a Naturwissenschaft | |
650 | 4 | |a Cheminformatics | |
650 | 0 | 7 | |a QSAR |0 (DE-588)4205429-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computational chemistry |0 (DE-588)4290091-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Screening |0 (DE-588)4054045-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Struktur-Aktivitäts-Beziehung |0 (DE-588)4183784-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Computational chemistry |0 (DE-588)4290091-8 |D s |
689 | 0 | 1 | |a Struktur-Aktivitäts-Beziehung |0 (DE-588)4183784-8 |D s |
689 | 0 | 2 | |a QSAR |0 (DE-588)4205429-1 |D s |
689 | 0 | 3 | |a Screening |0 (DE-588)4054045-5 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Varnek, Alexandre |e Sonstige |4 oth | |
700 | 1 | |a Tropsha, Alexander |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=496933 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028528618 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=496933 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=496933 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175517787619328 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV043104427 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)319517631 (DE-599)BVBBV043104427 |
dewey-full | 542.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 542 - Techniques, equipment & materials |
dewey-raw | 542.8 |
dewey-search | 542.8 |
dewey-sort | 3542.8 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10553nmm a2200745zc 4500</leader><controlfield tag="001">BV043104427</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1847558879</subfield><subfield code="9">1-84755-887-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1847558879</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-84755-887-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781847558879</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-84755-887-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)319517631</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043104427</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">542.8</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chemoinformatics approaches to virtual screening</subfield><subfield code="c">edited by Alexandre Varnek, Alexander Tropsha</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, UK</subfield><subfield code="b">Royal Society of Chemistry</subfield><subfield code="c">c2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 338 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface-- 1 - Fragment Descriptors in SAR/QSAR/QSPR studies, molecular similarity analysis and in virtual screening-- Introduction-- Historical survey-- Main characteristics of Fragment Descriptors-- Types of Fragments-- Simple Fixed Types-- WLN and SMILES Fragments-- Atom-Centered Fragments-- Bond-Centered Fragments-- Maximum Common Substructures-- Atom Pairs and Topological Multiplets-- Substituents and Molecular Frameworks-- Basic Subgraphs-- Mined Subgraphs-- Random Subgraphs-- Library Subgraphs-- Fragments describing supramolecular systems and chemical reactions-- Storage of fragments' information-- Fragment's Connectivity-- Generic Graphs-- Labeling Atoms-- Application in Virtual Screening and In Silico Design-- Filtering-- Similarity Search-- SAR Classification (Probabilistic) Models-- QSAR/QSPR Regression Models-- In Silico Design-- Limitations of Fragment Descriptors-- Conclusion-- 2 - Topological Pharmacophores-- Introduction-- 3D pharmacophore models and descriptors-- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Topological pharmacophores-- Topological pharmacophores from 2D-aligments-- Topological pharmacophores from 2D pharmacophore fingerprints-- Topological index-based 'pharmacophores'?-- Topological pharmacophores from 2D-aligments-- Topological pharmacophores from pharmacophore fingerprints-- Topological pharmacophore pair fingerprints-- Topological pharmacophore triplets-- Similarity searching with pharmacophore fingerprints - Technical Issues-- Similarity searching with pharmacophore fingerprints - Some Examples-- Machine-learning of Topological Pharmacophores from Fingerprints-- Topological index-based 'pharmacophores'?-- Conclusions-- 3 - Pharmacophore-based Virtual Screening in Drug Discovery-- Introduction-- Virtual Screening Methods-- Chemical Feature-based Pharmacophores-- The Term "3D Pharmacophore"-- Feature Definitions and Pharmacophore Representation-- Hydrogen bonding interactions-- Lipophilic areas-- Aromatic interactions-- Charge-transfer interactions-- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Customization and definition of new features-- Current super-positioning techniques for aligning 3D pharmacophores and molecules-- Generation and Use of Pharmacophore Models-- Ligand-based Pharmacophore Modeling-- Structure-based Pharmacophore Modeling-- Inclusion of Shape Information-- Qualitative vs. Quantitative Pharmacophore Models-- Validation of Models for Virtual Screening-- Application of Pharmacophore Models in Virtual Screening-- Pharmacophore Models as Part of a Multi-Step Screening Approach-- Antitarget and ADME(T) Screening Using Pharmacophores-- Pharmacophore Models for Activity Profiling and Parallel Virtual Screening-- Pharmacophore Method Extensions and Comparisons to Other Virtual Screening Methods-- Topological Fingerprints-- Shape-based Virtual Screening-- Docking Methods-- Pharmacophore Constraints Used in Docking-- Further Reading-- Summary and Conclusion-- 4 - Molecular Similarity Analysis in Virtual Screening-- Ligand-Based Virtual Screening-- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Foundations of Molecular Similarity Analysis-- Molecular Similarity and Chemical Spaces-- Similarity Measures-- Activity Landscapes-- Analyzing the Nature of Structure-Activity Relationships-- Relationships between different SARs-- SARs and target-ligand interactions-- Qualitative SAR characterization-- Quantitative SAR characterization-- Implications for molecular similarity analysis and virtual screening-- Strengths and Limitations of Similarity Methods-- Conclusion and Future Perspectives-- 5 - Molecular Field Topology Analysis in drug design and virtual screening-- Introduction: local molecular parameters in QSAR, drug design and virtual screening-- Supergraph-based QSAR models-- Rationale and history-- Molecular Field Topology Analysis (MFTA)-- General principles-- Local molecular descriptors: facets of ligand-biotarget interaction-- Construction of molecular supergraph-- Formation of descriptor matrix-- Statistical analysis-- Applicability control-- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - From MFTA model to drug design and virtual screening-- MFTA models in biotarget and drug action analysis-- MFTA models in virtual screening-- MFTA-based virtual screening of compound databases-- MFTA-based virtual screening of generated structure libraries-- Conclusion-- 6 - Probabilistic approaches in activity prediction-- Introduction-- Biological Activity-- Dose-Effect Relationships-- Experimental Data-- Probabilistic Ligand-Based Virtual Screening Methods-- Preparation of Training Sets-- Creation of Evaluation Sets-- Mathematical Approaches-- Evaluation of Prediction Accuracy-- Single-Targeted vs. Multi-Targeted Virtual Screening-- PASS Approach-- Biological Activities Predicted by PASS-- Chemical Structure Description in PASS-- SAR Base-- Algorithm of Activity Spectrum Estimation-- Interpretation of Prediction Results-- Selection of the Most Prospective Compounds-- Conclusions-- 7 - Fragment-based de novo design of druglike molecules-- Introduction--From Molecules to Fragments-- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - From Fragments to Molecules-- Scoring the Design-- Conclusions and Outlook-- 8 - Early ADME/T predictions: a toy or a tool?-- Introduction-- Which properties are important for early drug discovery?-- Physico-chemical profiling-- Lipophilicity-- Solubility-- Data availability and accuracy-- Models-- Why models don't work: the challenge of the Applicability Domain-- AD based on similarity in the descriptor space-- AD based on similarity in the property-based space-- How reliable are predictions of physico-chemical properties?-- Available Data for ADME/T biological properties-- Absorption-- Data-- Models-- Distribution-- Data-- Models-- The usefulness of ADME/T models is limited by available data-- Conclusions-- 9 - Compound Library Design - Principles and Applications-- Introduction to Compound Library Design-- Methods for Compound Library Design-- Design for Specific Biological Activities-- Similarity Guided Design of Targeted Libraries-- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Diversity Based Design of General Screening Libraries-- Pharmacophore Guided Design of Focused Compound Libraries-- QSAR Based Targeted Library Design-- Protein Structure Based Methods for Compound Library Design-- Design for Developability or Drug-likeness-- Rule & Alert Based Approaches-- QSAR Based ADMET Models-- Undesirable Functionality Filters-- Design for Multiple Objectives and Targets Simultaneously-- Concluding Remarks-- 10 - Integrated Chemo- and Bioinformatics Approaches to Virtual Screening-- Introduction-- Availability of large compound collections for virtual screening-- NIH Molecular Libraries Roadmap Initiative and the PubChem database-- Other chemical databases in public domain-- Structure based virtual screening-- Major methodologies-- Challenges and limitations of current approaches-- The implementation of cheminformatics concepts in structure based virtual screening-- Predictive QSAR models as virtual screening tools-- Critical Importance of model validation-- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Applicability domains and QSAR model acceptability criteria-- Predictive QSAR modeling workflow-- Examples of application-- Structure based chemical descriptors of protein ligand interface: the EnTESS method-- Derivation of the EnTESS descriptors-- Validation of the EnTESS descriptors for binding affinity prediction-- Structure based cheminformatics approach to virtual screening: the CoLiBRI method-- The representation of three-dimensional active sites in multidimensional chemistry space-- The mapping between chemistry spaces of active sites and ligands-- Summary and Conclusions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Focuses on chemoinformatics approaches applicable to virtual screening of very large available collections of chemical compounds to identify novel biologically active molecules</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics for scientists & engineers</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analytical chemistry</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Science</subfield><subfield code="2">eflch</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics for scientists & engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytical chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Chemistry / Clinical</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cheminformatics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cheminformatics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">QSAR</subfield><subfield code="0">(DE-588)4205429-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computational chemistry</subfield><subfield code="0">(DE-588)4290091-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Screening</subfield><subfield code="0">(DE-588)4054045-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Struktur-Aktivitäts-Beziehung</subfield><subfield code="0">(DE-588)4183784-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Computational chemistry</subfield><subfield code="0">(DE-588)4290091-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Struktur-Aktivitäts-Beziehung</subfield><subfield code="0">(DE-588)4183784-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">QSAR</subfield><subfield code="0">(DE-588)4205429-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Screening</subfield><subfield code="0">(DE-588)4054045-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Varnek, Alexandre</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tropsha, Alexander</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=496933</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028528618</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=496933</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=496933</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV043104427 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:33Z |
institution | BVB |
isbn | 1847558879 9781847558879 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028528618 |
oclc_num | 319517631 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xvi, 338 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Royal Society of Chemistry |
record_format | marc |
spelling | Chemoinformatics approaches to virtual screening edited by Alexandre Varnek, Alexander Tropsha Cambridge, UK Royal Society of Chemistry c2008 1 Online-Ressource (xvi, 338 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index Preface-- 1 - Fragment Descriptors in SAR/QSAR/QSPR studies, molecular similarity analysis and in virtual screening-- Introduction-- Historical survey-- Main characteristics of Fragment Descriptors-- Types of Fragments-- Simple Fixed Types-- WLN and SMILES Fragments-- Atom-Centered Fragments-- Bond-Centered Fragments-- Maximum Common Substructures-- Atom Pairs and Topological Multiplets-- Substituents and Molecular Frameworks-- Basic Subgraphs-- Mined Subgraphs-- Random Subgraphs-- Library Subgraphs-- Fragments describing supramolecular systems and chemical reactions-- Storage of fragments' information-- Fragment's Connectivity-- Generic Graphs-- Labeling Atoms-- Application in Virtual Screening and In Silico Design-- Filtering-- Similarity Search-- SAR Classification (Probabilistic) Models-- QSAR/QSPR Regression Models-- In Silico Design-- Limitations of Fragment Descriptors-- Conclusion-- 2 - Topological Pharmacophores-- Introduction-- 3D pharmacophore models and descriptors-- - Topological pharmacophores-- Topological pharmacophores from 2D-aligments-- Topological pharmacophores from 2D pharmacophore fingerprints-- Topological index-based 'pharmacophores'?-- Topological pharmacophores from 2D-aligments-- Topological pharmacophores from pharmacophore fingerprints-- Topological pharmacophore pair fingerprints-- Topological pharmacophore triplets-- Similarity searching with pharmacophore fingerprints - Technical Issues-- Similarity searching with pharmacophore fingerprints - Some Examples-- Machine-learning of Topological Pharmacophores from Fingerprints-- Topological index-based 'pharmacophores'?-- Conclusions-- 3 - Pharmacophore-based Virtual Screening in Drug Discovery-- Introduction-- Virtual Screening Methods-- Chemical Feature-based Pharmacophores-- The Term "3D Pharmacophore"-- Feature Definitions and Pharmacophore Representation-- Hydrogen bonding interactions-- Lipophilic areas-- Aromatic interactions-- Charge-transfer interactions-- - Customization and definition of new features-- Current super-positioning techniques for aligning 3D pharmacophores and molecules-- Generation and Use of Pharmacophore Models-- Ligand-based Pharmacophore Modeling-- Structure-based Pharmacophore Modeling-- Inclusion of Shape Information-- Qualitative vs. Quantitative Pharmacophore Models-- Validation of Models for Virtual Screening-- Application of Pharmacophore Models in Virtual Screening-- Pharmacophore Models as Part of a Multi-Step Screening Approach-- Antitarget and ADME(T) Screening Using Pharmacophores-- Pharmacophore Models for Activity Profiling and Parallel Virtual Screening-- Pharmacophore Method Extensions and Comparisons to Other Virtual Screening Methods-- Topological Fingerprints-- Shape-based Virtual Screening-- Docking Methods-- Pharmacophore Constraints Used in Docking-- Further Reading-- Summary and Conclusion-- 4 - Molecular Similarity Analysis in Virtual Screening-- Ligand-Based Virtual Screening-- - Foundations of Molecular Similarity Analysis-- Molecular Similarity and Chemical Spaces-- Similarity Measures-- Activity Landscapes-- Analyzing the Nature of Structure-Activity Relationships-- Relationships between different SARs-- SARs and target-ligand interactions-- Qualitative SAR characterization-- Quantitative SAR characterization-- Implications for molecular similarity analysis and virtual screening-- Strengths and Limitations of Similarity Methods-- Conclusion and Future Perspectives-- 5 - Molecular Field Topology Analysis in drug design and virtual screening-- Introduction: local molecular parameters in QSAR, drug design and virtual screening-- Supergraph-based QSAR models-- Rationale and history-- Molecular Field Topology Analysis (MFTA)-- General principles-- Local molecular descriptors: facets of ligand-biotarget interaction-- Construction of molecular supergraph-- Formation of descriptor matrix-- Statistical analysis-- Applicability control-- - From MFTA model to drug design and virtual screening-- MFTA models in biotarget and drug action analysis-- MFTA models in virtual screening-- MFTA-based virtual screening of compound databases-- MFTA-based virtual screening of generated structure libraries-- Conclusion-- 6 - Probabilistic approaches in activity prediction-- Introduction-- Biological Activity-- Dose-Effect Relationships-- Experimental Data-- Probabilistic Ligand-Based Virtual Screening Methods-- Preparation of Training Sets-- Creation of Evaluation Sets-- Mathematical Approaches-- Evaluation of Prediction Accuracy-- Single-Targeted vs. Multi-Targeted Virtual Screening-- PASS Approach-- Biological Activities Predicted by PASS-- Chemical Structure Description in PASS-- SAR Base-- Algorithm of Activity Spectrum Estimation-- Interpretation of Prediction Results-- Selection of the Most Prospective Compounds-- Conclusions-- 7 - Fragment-based de novo design of druglike molecules-- Introduction--From Molecules to Fragments-- - From Fragments to Molecules-- Scoring the Design-- Conclusions and Outlook-- 8 - Early ADME/T predictions: a toy or a tool?-- Introduction-- Which properties are important for early drug discovery?-- Physico-chemical profiling-- Lipophilicity-- Solubility-- Data availability and accuracy-- Models-- Why models don't work: the challenge of the Applicability Domain-- AD based on similarity in the descriptor space-- AD based on similarity in the property-based space-- How reliable are predictions of physico-chemical properties?-- Available Data for ADME/T biological properties-- Absorption-- Data-- Models-- Distribution-- Data-- Models-- The usefulness of ADME/T models is limited by available data-- Conclusions-- 9 - Compound Library Design - Principles and Applications-- Introduction to Compound Library Design-- Methods for Compound Library Design-- Design for Specific Biological Activities-- Similarity Guided Design of Targeted Libraries-- - Diversity Based Design of General Screening Libraries-- Pharmacophore Guided Design of Focused Compound Libraries-- QSAR Based Targeted Library Design-- Protein Structure Based Methods for Compound Library Design-- Design for Developability or Drug-likeness-- Rule & Alert Based Approaches-- QSAR Based ADMET Models-- Undesirable Functionality Filters-- Design for Multiple Objectives and Targets Simultaneously-- Concluding Remarks-- 10 - Integrated Chemo- and Bioinformatics Approaches to Virtual Screening-- Introduction-- Availability of large compound collections for virtual screening-- NIH Molecular Libraries Roadmap Initiative and the PubChem database-- Other chemical databases in public domain-- Structure based virtual screening-- Major methodologies-- Challenges and limitations of current approaches-- The implementation of cheminformatics concepts in structure based virtual screening-- Predictive QSAR models as virtual screening tools-- Critical Importance of model validation-- - Applicability domains and QSAR model acceptability criteria-- Predictive QSAR modeling workflow-- Examples of application-- Structure based chemical descriptors of protein ligand interface: the EnTESS method-- Derivation of the EnTESS descriptors-- Validation of the EnTESS descriptors for binding affinity prediction-- Structure based cheminformatics approach to virtual screening: the CoLiBRI method-- The representation of three-dimensional active sites in multidimensional chemistry space-- The mapping between chemistry spaces of active sites and ligands-- Summary and Conclusions Focuses on chemoinformatics approaches applicable to virtual screening of very large available collections of chemical compounds to identify novel biologically active molecules Mathematics for scientists & engineers bicssc Analytical chemistry bicssc Science eflch Mathematics for scientists & engineers Analytical chemistry Science SCIENCE / Chemistry / Clinical bisacsh Cheminformatics fast Chemie Naturwissenschaft Cheminformatics QSAR (DE-588)4205429-1 gnd rswk-swf Computational chemistry (DE-588)4290091-8 gnd rswk-swf Screening (DE-588)4054045-5 gnd rswk-swf Struktur-Aktivitäts-Beziehung (DE-588)4183784-8 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Computational chemistry (DE-588)4290091-8 s Struktur-Aktivitäts-Beziehung (DE-588)4183784-8 s QSAR (DE-588)4205429-1 s Screening (DE-588)4054045-5 s 2\p DE-604 Varnek, Alexandre Sonstige oth Tropsha, Alexander Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=496933 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Chemoinformatics approaches to virtual screening Mathematics for scientists & engineers bicssc Analytical chemistry bicssc Science eflch Mathematics for scientists & engineers Analytical chemistry Science SCIENCE / Chemistry / Clinical bisacsh Cheminformatics fast Chemie Naturwissenschaft Cheminformatics QSAR (DE-588)4205429-1 gnd Computational chemistry (DE-588)4290091-8 gnd Screening (DE-588)4054045-5 gnd Struktur-Aktivitäts-Beziehung (DE-588)4183784-8 gnd |
subject_GND | (DE-588)4205429-1 (DE-588)4290091-8 (DE-588)4054045-5 (DE-588)4183784-8 (DE-588)4143413-4 |
title | Chemoinformatics approaches to virtual screening |
title_auth | Chemoinformatics approaches to virtual screening |
title_exact_search | Chemoinformatics approaches to virtual screening |
title_full | Chemoinformatics approaches to virtual screening edited by Alexandre Varnek, Alexander Tropsha |
title_fullStr | Chemoinformatics approaches to virtual screening edited by Alexandre Varnek, Alexander Tropsha |
title_full_unstemmed | Chemoinformatics approaches to virtual screening edited by Alexandre Varnek, Alexander Tropsha |
title_short | Chemoinformatics approaches to virtual screening |
title_sort | chemoinformatics approaches to virtual screening |
topic | Mathematics for scientists & engineers bicssc Analytical chemistry bicssc Science eflch Mathematics for scientists & engineers Analytical chemistry Science SCIENCE / Chemistry / Clinical bisacsh Cheminformatics fast Chemie Naturwissenschaft Cheminformatics QSAR (DE-588)4205429-1 gnd Computational chemistry (DE-588)4290091-8 gnd Screening (DE-588)4054045-5 gnd Struktur-Aktivitäts-Beziehung (DE-588)4183784-8 gnd |
topic_facet | Mathematics for scientists & engineers Analytical chemistry Science SCIENCE / Chemistry / Clinical Cheminformatics Chemie Naturwissenschaft QSAR Computational chemistry Screening Struktur-Aktivitäts-Beziehung Aufsatzsammlung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=496933 |
work_keys_str_mv | AT varnekalexandre chemoinformaticsapproachestovirtualscreening AT tropshaalexander chemoinformaticsapproachestovirtualscreening |