Back-of-the-envelope quantum mechanics: with extensions to many-body systems and integrable PDEs
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2014
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Include indexes 1. Ground state energy of a hybrid harmonic-quartic oscillator: a case study. 1.1. Solved problems -- 2. Bohr-Sommerfeld quantization. 2.1. Solved problems. 2.2. Problems without provided solutions. 2.3. Background. 2.4. Problems linked to the "background" -- 3. "Halved" harmonic oscillator: a case study. 3.1. Solved problems -- 4. Semi-classical matrix elements of observables and perturbation theory. 4.1. Solved problems. 4.2. Problems without provided solutions. 4.3. Background -- 5. Variational problems. 5.1. Solved problems. 5.2. Problems without provided solutions. 5.3. Background. 5.4. Problems linked to the "background" -- 6. Gravitational well: a case study. 6.1. Solved problems -- 7. Miscellaneous. 7.1. Solved problems -- 8. The Hellmann-Feynman theorem. 8.1. Solved problems. 8.2. Problems without provided solutions. 8.3. Background -- 9. Local density approximation theories. 9.1. Solved problems. 9.2. Problems without provided solutions -- 10. Integrable partial differential equations. 10.1. Solved problems. 10.2. Problems without provided solutions Dimensional and order-of-magnitude estimates are practiced by almost everybody but taught almost nowhere. When physics students engage in their first theoretical research project, they soon learn that exactly solvable problems belong only to textbooks, that numerical models are long and resource consuming, and that "something else" is needed to quickly gain insight into the system they are going to study. Qualitative methods are this "something else", but typically, students have never heard of them before. The aim of this book is to teach the craft of qualitative analysis using a set of problems, some with solutions and some without, in advanced undergraduate and beginning graduate quantum mechanics. Examples include a dimensional analysis solution for the spectrum of a quartic oscillator, simple WKB formulas for the matrix elements of a coordinate in a gravitational well, and a three-line-long estimate for the ionization energy of atoms uniformly valid across the whole periodic table. The pièce de résistance in the collection is a series of dimensional analysis questions in integrable nonlinear partial differential equations with no dimensions existing a priori. Solved problems include the relationship between the size and the speed of solitons of the Korteweg-de Vries equation and an expression for the oscillation period of a nonlinear Schrödinger breather as a function of its width |
Beschreibung: | 1 Online-Ressource (xviii, 151 p.) |
ISBN: | 9789814508469 9789814508476 9814508470 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043103076 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2014 |||| o||u| ||||||eng d | ||
020 | |a 9789814508469 |9 978-981-4508-46-9 | ||
020 | |a 9789814508476 |c electronic bk. |9 978-981-4508-47-6 | ||
020 | |a 9814508470 |c electronic bk. |9 981-4508-47-0 | ||
035 | |a (OCoLC)860388605 | ||
035 | |a (DE-599)BVBBV043103076 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.12 |2 22 | |
100 | 1 | |a Olshanii, M., (Maxim) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Back-of-the-envelope quantum mechanics |b with extensions to many-body systems and integrable PDEs |c Maxim Olshanii |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2014 | |
300 | |a 1 Online-Ressource (xviii, 151 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Include indexes | ||
500 | |a 1. Ground state energy of a hybrid harmonic-quartic oscillator: a case study. 1.1. Solved problems -- 2. Bohr-Sommerfeld quantization. 2.1. Solved problems. 2.2. Problems without provided solutions. 2.3. Background. 2.4. Problems linked to the "background" -- 3. "Halved" harmonic oscillator: a case study. 3.1. Solved problems -- 4. Semi-classical matrix elements of observables and perturbation theory. 4.1. Solved problems. 4.2. Problems without provided solutions. 4.3. Background -- 5. Variational problems. 5.1. Solved problems. 5.2. Problems without provided solutions. 5.3. Background. 5.4. Problems linked to the "background" -- 6. Gravitational well: a case study. 6.1. Solved problems -- 7. Miscellaneous. 7.1. Solved problems -- 8. The Hellmann-Feynman theorem. 8.1. Solved problems. 8.2. Problems without provided solutions. 8.3. Background -- 9. Local density approximation theories. 9.1. Solved problems. 9.2. Problems without provided solutions -- 10. Integrable partial differential equations. 10.1. Solved problems. 10.2. Problems without provided solutions | ||
500 | |a Dimensional and order-of-magnitude estimates are practiced by almost everybody but taught almost nowhere. When physics students engage in their first theoretical research project, they soon learn that exactly solvable problems belong only to textbooks, that numerical models are long and resource consuming, and that "something else" is needed to quickly gain insight into the system they are going to study. Qualitative methods are this "something else", but typically, students have never heard of them before. The aim of this book is to teach the craft of qualitative analysis using a set of problems, some with solutions and some without, in advanced undergraduate and beginning graduate quantum mechanics. Examples include a dimensional analysis solution for the spectrum of a quartic oscillator, simple WKB formulas for the matrix elements of a coordinate in a gravitational well, and a three-line-long estimate for the ionization energy of atoms uniformly valid across the whole periodic table. The pièce de résistance in the collection is a series of dimensional analysis questions in integrable nonlinear partial differential equations with no dimensions existing a priori. Solved problems include the relationship between the size and the speed of solitons of the Korteweg-de Vries equation and an expression for the oscillation period of a nonlinear Schrödinger breather as a function of its width | ||
650 | 7 | |a SCIENCE / Energy |2 bisacsh | |
650 | 7 | |a SCIENCE / Mechanics / General |2 bisacsh | |
650 | 7 | |a SCIENCE / Physics / General |2 bisacsh | |
650 | 7 | |a Quantenmechanik |2 gnd | |
650 | 7 | |a Partielle Differentialgleichung |2 gnd | |
650 | 7 | |a Vielkörperproblem |2 gnd | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Many-body problem | |
650 | 4 | |a Differential equations, Partial | |
650 | 0 | 7 | |a Näherungsverfahren |0 (DE-588)4206467-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | 1 | |a Näherungsverfahren |0 (DE-588)4206467-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
710 | 2 | |a World Scientific (Firm) |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=661916 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028527267 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=661916 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=661916 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175515271036928 |
---|---|
any_adam_object | |
author | Olshanii, M., (Maxim) |
author_facet | Olshanii, M., (Maxim) |
author_role | aut |
author_sort | Olshanii, M., (Maxim) |
author_variant | m m o mm mmo |
building | Verbundindex |
bvnumber | BV043103076 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)860388605 (DE-599)BVBBV043103076 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04839nmm a2200577zc 4500</leader><controlfield tag="001">BV043103076</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814508469</subfield><subfield code="9">978-981-4508-46-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814508476</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4508-47-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814508470</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4508-47-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)860388605</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043103076</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Olshanii, M., (Maxim)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Back-of-the-envelope quantum mechanics</subfield><subfield code="b">with extensions to many-body systems and integrable PDEs</subfield><subfield code="c">Maxim Olshanii</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 151 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Include indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Ground state energy of a hybrid harmonic-quartic oscillator: a case study. 1.1. Solved problems -- 2. Bohr-Sommerfeld quantization. 2.1. Solved problems. 2.2. Problems without provided solutions. 2.3. Background. 2.4. Problems linked to the "background" -- 3. "Halved" harmonic oscillator: a case study. 3.1. Solved problems -- 4. Semi-classical matrix elements of observables and perturbation theory. 4.1. Solved problems. 4.2. Problems without provided solutions. 4.3. Background -- 5. Variational problems. 5.1. Solved problems. 5.2. Problems without provided solutions. 5.3. Background. 5.4. Problems linked to the "background" -- 6. Gravitational well: a case study. 6.1. Solved problems -- 7. Miscellaneous. 7.1. Solved problems -- 8. The Hellmann-Feynman theorem. 8.1. Solved problems. 8.2. Problems without provided solutions. 8.3. Background -- 9. Local density approximation theories. 9.1. Solved problems. 9.2. Problems without provided solutions -- 10. Integrable partial differential equations. 10.1. Solved problems. 10.2. Problems without provided solutions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Dimensional and order-of-magnitude estimates are practiced by almost everybody but taught almost nowhere. When physics students engage in their first theoretical research project, they soon learn that exactly solvable problems belong only to textbooks, that numerical models are long and resource consuming, and that "something else" is needed to quickly gain insight into the system they are going to study. Qualitative methods are this "something else", but typically, students have never heard of them before. The aim of this book is to teach the craft of qualitative analysis using a set of problems, some with solutions and some without, in advanced undergraduate and beginning graduate quantum mechanics. Examples include a dimensional analysis solution for the spectrum of a quartic oscillator, simple WKB formulas for the matrix elements of a coordinate in a gravitational well, and a three-line-long estimate for the ionization energy of atoms uniformly valid across the whole periodic table. The pièce de résistance in the collection is a series of dimensional analysis questions in integrable nonlinear partial differential equations with no dimensions existing a priori. Solved problems include the relationship between the size and the speed of solitons of the Korteweg-de Vries equation and an expression for the oscillation period of a nonlinear Schrödinger breather as a function of its width</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Energy</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Mechanics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vielkörperproblem</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Many-body problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Näherungsverfahren</subfield><subfield code="0">(DE-588)4206467-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Näherungsverfahren</subfield><subfield code="0">(DE-588)4206467-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=661916</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028527267</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=661916</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=661916</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043103076 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:31Z |
institution | BVB |
isbn | 9789814508469 9789814508476 9814508470 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028527267 |
oclc_num | 860388605 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xviii, 151 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Olshanii, M., (Maxim) Verfasser aut Back-of-the-envelope quantum mechanics with extensions to many-body systems and integrable PDEs Maxim Olshanii Singapore World Scientific Pub. Co. c2014 1 Online-Ressource (xviii, 151 p.) txt rdacontent c rdamedia cr rdacarrier Include indexes 1. Ground state energy of a hybrid harmonic-quartic oscillator: a case study. 1.1. Solved problems -- 2. Bohr-Sommerfeld quantization. 2.1. Solved problems. 2.2. Problems without provided solutions. 2.3. Background. 2.4. Problems linked to the "background" -- 3. "Halved" harmonic oscillator: a case study. 3.1. Solved problems -- 4. Semi-classical matrix elements of observables and perturbation theory. 4.1. Solved problems. 4.2. Problems without provided solutions. 4.3. Background -- 5. Variational problems. 5.1. Solved problems. 5.2. Problems without provided solutions. 5.3. Background. 5.4. Problems linked to the "background" -- 6. Gravitational well: a case study. 6.1. Solved problems -- 7. Miscellaneous. 7.1. Solved problems -- 8. The Hellmann-Feynman theorem. 8.1. Solved problems. 8.2. Problems without provided solutions. 8.3. Background -- 9. Local density approximation theories. 9.1. Solved problems. 9.2. Problems without provided solutions -- 10. Integrable partial differential equations. 10.1. Solved problems. 10.2. Problems without provided solutions Dimensional and order-of-magnitude estimates are practiced by almost everybody but taught almost nowhere. When physics students engage in their first theoretical research project, they soon learn that exactly solvable problems belong only to textbooks, that numerical models are long and resource consuming, and that "something else" is needed to quickly gain insight into the system they are going to study. Qualitative methods are this "something else", but typically, students have never heard of them before. The aim of this book is to teach the craft of qualitative analysis using a set of problems, some with solutions and some without, in advanced undergraduate and beginning graduate quantum mechanics. Examples include a dimensional analysis solution for the spectrum of a quartic oscillator, simple WKB formulas for the matrix elements of a coordinate in a gravitational well, and a three-line-long estimate for the ionization energy of atoms uniformly valid across the whole periodic table. The pièce de résistance in the collection is a series of dimensional analysis questions in integrable nonlinear partial differential equations with no dimensions existing a priori. Solved problems include the relationship between the size and the speed of solitons of the Korteweg-de Vries equation and an expression for the oscillation period of a nonlinear Schrödinger breather as a function of its width SCIENCE / Energy bisacsh SCIENCE / Mechanics / General bisacsh SCIENCE / Physics / General bisacsh Quantenmechanik gnd Partielle Differentialgleichung gnd Vielkörperproblem gnd Quantentheorie Quantum theory Many-body problem Differential equations, Partial Näherungsverfahren (DE-588)4206467-3 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 s Näherungsverfahren (DE-588)4206467-3 s 1\p DE-604 World Scientific (Firm) Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=661916 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Olshanii, M., (Maxim) Back-of-the-envelope quantum mechanics with extensions to many-body systems and integrable PDEs SCIENCE / Energy bisacsh SCIENCE / Mechanics / General bisacsh SCIENCE / Physics / General bisacsh Quantenmechanik gnd Partielle Differentialgleichung gnd Vielkörperproblem gnd Quantentheorie Quantum theory Many-body problem Differential equations, Partial Näherungsverfahren (DE-588)4206467-3 gnd Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4206467-3 (DE-588)4047989-4 |
title | Back-of-the-envelope quantum mechanics with extensions to many-body systems and integrable PDEs |
title_auth | Back-of-the-envelope quantum mechanics with extensions to many-body systems and integrable PDEs |
title_exact_search | Back-of-the-envelope quantum mechanics with extensions to many-body systems and integrable PDEs |
title_full | Back-of-the-envelope quantum mechanics with extensions to many-body systems and integrable PDEs Maxim Olshanii |
title_fullStr | Back-of-the-envelope quantum mechanics with extensions to many-body systems and integrable PDEs Maxim Olshanii |
title_full_unstemmed | Back-of-the-envelope quantum mechanics with extensions to many-body systems and integrable PDEs Maxim Olshanii |
title_short | Back-of-the-envelope quantum mechanics |
title_sort | back of the envelope quantum mechanics with extensions to many body systems and integrable pdes |
title_sub | with extensions to many-body systems and integrable PDEs |
topic | SCIENCE / Energy bisacsh SCIENCE / Mechanics / General bisacsh SCIENCE / Physics / General bisacsh Quantenmechanik gnd Partielle Differentialgleichung gnd Vielkörperproblem gnd Quantentheorie Quantum theory Many-body problem Differential equations, Partial Näherungsverfahren (DE-588)4206467-3 gnd Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | SCIENCE / Energy SCIENCE / Mechanics / General SCIENCE / Physics / General Quantenmechanik Partielle Differentialgleichung Vielkörperproblem Quantentheorie Quantum theory Many-body problem Differential equations, Partial Näherungsverfahren |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=661916 |
work_keys_str_mv | AT olshaniimmaxim backoftheenvelopequantummechanicswithextensionstomanybodysystemsandintegrablepdes AT worldscientificfirm backoftheenvelopequantummechanicswithextensionstomanybodysystemsandintegrablepdes |