Weyl group multiple Dirichlet series: type A combinatorial theory
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
©2011
|
Schriftenreihe: | Annals of mathematics studies
no. 175 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 143-147) and index Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics |
Beschreibung: | 1 Online-Ressource (158 pages) |
ISBN: | 0691150656 0691150664 1400838991 9780691150659 9780691150666 9781400838998 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043102281 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2011 |||| o||u| ||||||eng d | ||
020 | |a 0691150656 |9 0-691-15065-6 | ||
020 | |a 0691150664 |9 0-691-15066-4 | ||
020 | |a 1400838991 |c electronic bk. |9 1-4008-3899-1 | ||
020 | |a 9780691150659 |9 978-0-691-15065-9 | ||
020 | |a 9780691150666 |9 978-0-691-15066-6 | ||
020 | |a 9781400838998 |c electronic bk. |9 978-1-4008-3899-8 | ||
035 | |a (OCoLC)713258718 | ||
035 | |a (DE-599)BVBBV043102281 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.243 |2 22 | |
100 | 1 | |a Brubaker, Ben |e Verfasser |4 aut | |
245 | 1 | 0 | |a Weyl group multiple Dirichlet series |b type A combinatorial theory |c Ben Brubaker, Daniel Bump, and Solomon Friedberg |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c ©2011 | |
300 | |a 1 Online-Ressource (158 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Annals of mathematics studies |v no. 175 | |
500 | |a Includes bibliographical references (pages 143-147) and index | ||
500 | |a Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Dirichlet series | |
650 | 4 | |a Weyl groups | |
650 | 7 | |a MATHEMATICS / Infinity |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Number Theory |2 bisacsh | |
650 | 7 | |a Dirichlet series |2 fast | |
650 | 7 | |a Weyl groups |2 fast | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Dirichlet series | |
650 | 4 | |a Weyl groups | |
650 | 0 | 7 | |a Dirichlet-Reihe |0 (DE-588)4150139-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Weyl-Gruppe |0 (DE-588)4065886-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dirichlet-Reihe |0 (DE-588)4150139-1 |D s |
689 | 0 | 1 | |a Weyl-Gruppe |0 (DE-588)4065886-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Bump, Daniel |e Sonstige |4 oth | |
700 | 1 | |a Friedberg, Solomon |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=358317 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028526472 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=358317 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=358317 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175513598558208 |
---|---|
any_adam_object | |
author | Brubaker, Ben |
author_facet | Brubaker, Ben |
author_role | aut |
author_sort | Brubaker, Ben |
author_variant | b b bb |
building | Verbundindex |
bvnumber | BV043102281 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)713258718 (DE-599)BVBBV043102281 |
dewey-full | 515/.243 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.243 |
dewey-search | 515/.243 |
dewey-sort | 3515 3243 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03151nmm a2200625zcb4500</leader><controlfield tag="001">BV043102281</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691150656</subfield><subfield code="9">0-691-15065-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691150664</subfield><subfield code="9">0-691-15066-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400838991</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-3899-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691150659</subfield><subfield code="9">978-0-691-15065-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691150666</subfield><subfield code="9">978-0-691-15066-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400838998</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-3899-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)713258718</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043102281</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.243</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brubaker, Ben</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Weyl group multiple Dirichlet series</subfield><subfield code="b">type A combinatorial theory</subfield><subfield code="c">Ben Brubaker, Daniel Bump, and Solomon Friedberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">©2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (158 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">no. 175</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 143-147) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dirichlet series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weyl groups</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Infinity</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Number Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dirichlet series</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Weyl groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dirichlet series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weyl groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dirichlet-Reihe</subfield><subfield code="0">(DE-588)4150139-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Weyl-Gruppe</subfield><subfield code="0">(DE-588)4065886-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dirichlet-Reihe</subfield><subfield code="0">(DE-588)4150139-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Weyl-Gruppe</subfield><subfield code="0">(DE-588)4065886-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bump, Daniel</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Friedberg, Solomon</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=358317</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028526472</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=358317</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=358317</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043102281 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:29Z |
institution | BVB |
isbn | 0691150656 0691150664 1400838991 9780691150659 9780691150666 9781400838998 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028526472 |
oclc_num | 713258718 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (158 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Princeton University Press |
record_format | marc |
series2 | Annals of mathematics studies |
spelling | Brubaker, Ben Verfasser aut Weyl group multiple Dirichlet series type A combinatorial theory Ben Brubaker, Daniel Bump, and Solomon Friedberg Princeton, N.J. Princeton University Press ©2011 1 Online-Ressource (158 pages) txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies no. 175 Includes bibliographical references (pages 143-147) and index Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics Mathematics Dirichlet series Weyl groups MATHEMATICS / Infinity bisacsh MATHEMATICS / Number Theory bisacsh Dirichlet series fast Weyl groups fast Mathematik Dirichlet-Reihe (DE-588)4150139-1 gnd rswk-swf Weyl-Gruppe (DE-588)4065886-7 gnd rswk-swf Dirichlet-Reihe (DE-588)4150139-1 s Weyl-Gruppe (DE-588)4065886-7 s 1\p DE-604 Bump, Daniel Sonstige oth Friedberg, Solomon Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=358317 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Brubaker, Ben Weyl group multiple Dirichlet series type A combinatorial theory Mathematics Dirichlet series Weyl groups MATHEMATICS / Infinity bisacsh MATHEMATICS / Number Theory bisacsh Dirichlet series fast Weyl groups fast Mathematik Dirichlet-Reihe (DE-588)4150139-1 gnd Weyl-Gruppe (DE-588)4065886-7 gnd |
subject_GND | (DE-588)4150139-1 (DE-588)4065886-7 |
title | Weyl group multiple Dirichlet series type A combinatorial theory |
title_auth | Weyl group multiple Dirichlet series type A combinatorial theory |
title_exact_search | Weyl group multiple Dirichlet series type A combinatorial theory |
title_full | Weyl group multiple Dirichlet series type A combinatorial theory Ben Brubaker, Daniel Bump, and Solomon Friedberg |
title_fullStr | Weyl group multiple Dirichlet series type A combinatorial theory Ben Brubaker, Daniel Bump, and Solomon Friedberg |
title_full_unstemmed | Weyl group multiple Dirichlet series type A combinatorial theory Ben Brubaker, Daniel Bump, and Solomon Friedberg |
title_short | Weyl group multiple Dirichlet series |
title_sort | weyl group multiple dirichlet series type a combinatorial theory |
title_sub | type A combinatorial theory |
topic | Mathematics Dirichlet series Weyl groups MATHEMATICS / Infinity bisacsh MATHEMATICS / Number Theory bisacsh Dirichlet series fast Weyl groups fast Mathematik Dirichlet-Reihe (DE-588)4150139-1 gnd Weyl-Gruppe (DE-588)4065886-7 gnd |
topic_facet | Mathematics Dirichlet series Weyl groups MATHEMATICS / Infinity MATHEMATICS / Number Theory Mathematik Dirichlet-Reihe Weyl-Gruppe |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=358317 |
work_keys_str_mv | AT brubakerben weylgroupmultipledirichletseriestypeacombinatorialtheory AT bumpdaniel weylgroupmultipledirichletseriestypeacombinatorialtheory AT friedbergsolomon weylgroupmultipledirichletseriestypeacombinatorialtheory |