Lectures on Lie groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, NJ
World Scientific
©2000
|
Schriftenreihe: | Series on university mathematics
vol. 2 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Lecture 1 Linear Groups and Linear Representations; 1. Basic Concepts and Definitions; 2. A Brief Overview; 3. Compact Groups, Haar Integral and the Averaging Method; 4. Frobenius-Schur Orthogonality and the Character Theory; 5. Classification of Irreducible Complex Representations of S3; 6. L2(G) and Concluding Remarks; Lecture 2 Lie Groups and Lie Algebras; 1. One-parameter Subgroups and Lie Algebras; 2. Lie Subgroups and the Fundamental Theorem of Lie; 3. Lie Homomorphisms and Simply Connected Lie Groups; 4. Adjoint Actions and Adjoint Representations This invaluable book provides a concise and systematic introduction to the theory of compact connected Lie groups and their representations, as well as a complete presentation of the structure and classification theory. It uses a non-traditional approach and organization. There is a proper balance between, and a natural combination of, the algebraic and geometric aspects of Lie theory, not only in technical proofs but also in conceptual viewpoints |
Beschreibung: | 1 Online-Ressource (v, 108 pages) |
ISBN: | 9789812384782 9812384782 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043101139 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2000 |||| o||u| ||||||eng d | ||
020 | |a 9789812384782 |9 978-981-238-478-2 | ||
020 | |a 9812384782 |9 981-238-478-2 | ||
035 | |a (OCoLC)52613261 | ||
035 | |a (DE-599)BVBBV043101139 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512/.55 |2 21 | |
100 | 1 | |a Hsiang, Wu Yi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on Lie groups |c Wu-Yi Hsiang |
264 | 1 | |a River Edge, NJ |b World Scientific |c ©2000 | |
300 | |a 1 Online-Ressource (v, 108 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series on university mathematics |v vol. 2 | |
500 | |a Lecture 1 Linear Groups and Linear Representations; 1. Basic Concepts and Definitions; 2. A Brief Overview; 3. Compact Groups, Haar Integral and the Averaging Method; 4. Frobenius-Schur Orthogonality and the Character Theory; 5. Classification of Irreducible Complex Representations of S3; 6. L2(G) and Concluding Remarks; Lecture 2 Lie Groups and Lie Algebras; 1. One-parameter Subgroups and Lie Algebras; 2. Lie Subgroups and the Fundamental Theorem of Lie; 3. Lie Homomorphisms and Simply Connected Lie Groups; 4. Adjoint Actions and Adjoint Representations | ||
500 | |a This invaluable book provides a concise and systematic introduction to the theory of compact connected Lie groups and their representations, as well as a complete presentation of the structure and classification theory. It uses a non-traditional approach and organization. There is a proper balance between, and a natural combination of, the algebraic and geometric aspects of Lie theory, not only in technical proofs but also in conceptual viewpoints | ||
650 | 4 | |a Lie, Groupes de | |
650 | 7 | |a MATHEMATICS / Algebra / Linear |2 bisacsh | |
650 | 7 | |a Lie groups |2 fast | |
650 | 7 | |a Lie, Groupes de |2 ram | |
650 | 4 | |a Lie groups | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Typ-Gruppe |0 (DE-588)4167650-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Typ-Gruppe |0 (DE-588)4167650-6 |D s |
689 | 0 | 1 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=83659 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028525331 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=83659 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=83659 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175511259185152 |
---|---|
any_adam_object | |
author | Hsiang, Wu Yi |
author_facet | Hsiang, Wu Yi |
author_role | aut |
author_sort | Hsiang, Wu Yi |
author_variant | w y h wy wyh |
building | Verbundindex |
bvnumber | BV043101139 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)52613261 (DE-599)BVBBV043101139 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03129nmm a2200541zcb4500</leader><controlfield tag="001">BV043101139</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812384782</subfield><subfield code="9">978-981-238-478-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812384782</subfield><subfield code="9">981-238-478-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52613261</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043101139</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">21</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hsiang, Wu Yi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on Lie groups</subfield><subfield code="c">Wu-Yi Hsiang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">River Edge, NJ</subfield><subfield code="b">World Scientific</subfield><subfield code="c">©2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (v, 108 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series on university mathematics</subfield><subfield code="v">vol. 2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Lecture 1 Linear Groups and Linear Representations; 1. Basic Concepts and Definitions; 2. A Brief Overview; 3. Compact Groups, Haar Integral and the Averaging Method; 4. Frobenius-Schur Orthogonality and the Character Theory; 5. Classification of Irreducible Complex Representations of S3; 6. L2(G) and Concluding Remarks; Lecture 2 Lie Groups and Lie Algebras; 1. One-parameter Subgroups and Lie Algebras; 2. Lie Subgroups and the Fundamental Theorem of Lie; 3. Lie Homomorphisms and Simply Connected Lie Groups; 4. Adjoint Actions and Adjoint Representations</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This invaluable book provides a concise and systematic introduction to the theory of compact connected Lie groups and their representations, as well as a complete presentation of the structure and classification theory. It uses a non-traditional approach and organization. There is a proper balance between, and a natural combination of, the algebraic and geometric aspects of Lie theory, not only in technical proofs but also in conceptual viewpoints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Linear</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie, Groupes de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Typ-Gruppe</subfield><subfield code="0">(DE-588)4167650-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Typ-Gruppe</subfield><subfield code="0">(DE-588)4167650-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=83659</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028525331</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=83659</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=83659</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043101139 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:27Z |
institution | BVB |
isbn | 9789812384782 9812384782 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028525331 |
oclc_num | 52613261 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (v, 108 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | World Scientific |
record_format | marc |
series2 | Series on university mathematics |
spelling | Hsiang, Wu Yi Verfasser aut Lectures on Lie groups Wu-Yi Hsiang River Edge, NJ World Scientific ©2000 1 Online-Ressource (v, 108 pages) txt rdacontent c rdamedia cr rdacarrier Series on university mathematics vol. 2 Lecture 1 Linear Groups and Linear Representations; 1. Basic Concepts and Definitions; 2. A Brief Overview; 3. Compact Groups, Haar Integral and the Averaging Method; 4. Frobenius-Schur Orthogonality and the Character Theory; 5. Classification of Irreducible Complex Representations of S3; 6. L2(G) and Concluding Remarks; Lecture 2 Lie Groups and Lie Algebras; 1. One-parameter Subgroups and Lie Algebras; 2. Lie Subgroups and the Fundamental Theorem of Lie; 3. Lie Homomorphisms and Simply Connected Lie Groups; 4. Adjoint Actions and Adjoint Representations This invaluable book provides a concise and systematic introduction to the theory of compact connected Lie groups and their representations, as well as a complete presentation of the structure and classification theory. It uses a non-traditional approach and organization. There is a proper balance between, and a natural combination of, the algebraic and geometric aspects of Lie theory, not only in technical proofs but also in conceptual viewpoints Lie, Groupes de MATHEMATICS / Algebra / Linear bisacsh Lie groups fast Lie, Groupes de ram Lie groups Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Lie-Typ-Gruppe (DE-588)4167650-6 gnd rswk-swf Lie-Typ-Gruppe (DE-588)4167650-6 s Lie-Algebra (DE-588)4130355-6 s 1\p DE-604 Lie-Gruppe (DE-588)4035695-4 s 2\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=83659 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hsiang, Wu Yi Lectures on Lie groups Lie, Groupes de MATHEMATICS / Algebra / Linear bisacsh Lie groups fast Lie, Groupes de ram Lie groups Lie-Gruppe (DE-588)4035695-4 gnd Lie-Algebra (DE-588)4130355-6 gnd Lie-Typ-Gruppe (DE-588)4167650-6 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4130355-6 (DE-588)4167650-6 |
title | Lectures on Lie groups |
title_auth | Lectures on Lie groups |
title_exact_search | Lectures on Lie groups |
title_full | Lectures on Lie groups Wu-Yi Hsiang |
title_fullStr | Lectures on Lie groups Wu-Yi Hsiang |
title_full_unstemmed | Lectures on Lie groups Wu-Yi Hsiang |
title_short | Lectures on Lie groups |
title_sort | lectures on lie groups |
topic | Lie, Groupes de MATHEMATICS / Algebra / Linear bisacsh Lie groups fast Lie, Groupes de ram Lie groups Lie-Gruppe (DE-588)4035695-4 gnd Lie-Algebra (DE-588)4130355-6 gnd Lie-Typ-Gruppe (DE-588)4167650-6 gnd |
topic_facet | Lie, Groupes de MATHEMATICS / Algebra / Linear Lie groups Lie-Gruppe Lie-Algebra Lie-Typ-Gruppe |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=83659 |
work_keys_str_mv | AT hsiangwuyi lecturesonliegroups |