Machine learning approaches to bioinformatics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
©2010
|
Schriftenreihe: | Science, engineering, and biology informatics
v. 4 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index 1. Introduction. 1.1. Brief history of bioinformatics. 1.2. Database application in bioinformatics. 1.3. Web tools and services for sequence homology alignment. 1.4. Pattern analysis. 1.5. The contribution of information technology. 1.6. Chapters -- 2. Introduction to unsupervised learning -- 3. Probability density estimation approaches. 3.1. Histogram approach. 3.2. Parametric approach. 3.3. Non-parametric approach -- 4. Dimension reduction. 4.1. General. 4.2. Principal component analysis. 4.3. An application of PCA. 4.4. Multi-dimensional scaling. 4.5. Application of the Sammon algorithm to gene data -- 5. Cluster analysis. 5.1. Hierarchical clustering. 5.2. K-means. 5.3. Fuzzy C-means. 5.4. Gaussian mixture models. 5.5. Application of clustering algorithms to the Burkholderia pseudomallei gene expression data -- - 6. Self-organising map. 6.1. Vector quantization. 6.2. SOM structure. 6.3. SOM learning algorithm. 6.4. Using SOM for classification. 6.5. Bioinformatics applications of VQ and SOM. 6.6. A case study of gene expression data analysis. 6.7. A case study of sequence data analysis -- 7. Introduction to supervised learning. 7.1. General concepts. 7.2. General definition. 7.3. Model evaluation. 7.4. Data organisation. 7.5. Bayes rule for classification -- 8. Linear/quadratic discriminant analysis and K-nearest neighbour. 8.1. Linear discriminant analysis. 8.2. Generalised discriminant analysis. 8.3. K-nearest neighbour. 8.4. KNN for gene data analysis -- - 9. Classification and regression trees, random forest algorithm. 9.1. Introduction. 9.2. Basic principle for constructing a classification tree. 9.3. Classification and regression tree. 9.4. CART for compound pathway involvement prediction. 9.5. The random forest algorithm. 9.6. RF for analyzing Burkholderia pseudomallei gene expression profiles -- 10. Multi-layer perceptron. 10.1. Introduction. 10.2. Learning theory. 10.3. Learning algorithms. 10.4. Applications to bioinformatics. 10.5. A case study on Burkholderia pseudomallei gene expression data -- 11. Basis function approach and vector machines. 11.1. Introduction. 11.2. Radial-basis function neural network (RBFNN). 11.3. Bio-basis function neural network. 11.4. Support vector machine. 11.5. Relevance vector machine -- 12. Hidden Markov model. 12.1. Markov model. 12.2. Hidden Markov model. 12.3. HMM for sequence classification -- - 13. Feature selection. 13.1. Built-in strategy. 13.2. Exhaustive strategy. 13.3. Heuristic strategy -- orthogonal least square approach. 13.4. Criteria for feature selection -- 14. Feature extraction (biological data coding). 14.1. Molecular sequences. 14.2. Chemical compounds. 14.3. General definition. 14.4. Sequence analysis -- 15. Sequence/structural bioinformatics foundation -- peptide classification. 15.1. Nitration site prediction. 15.2. Plant promoter region prediction -- 16. Gene network -- causal network and Bayesian networks. 16.1. Gene regulatory network. 16.2. Causal networks, networks, graphs. 16.3. A brief review of the probability. 16.4. Discrete Bayesian network. 16.5. Inference with discrete Bayesian network. 16.6. Learning discrete Bayesian network. 16.7. Bayesian networks for gene regulartory networks. 16.8. Bayesian networks for discovering peptide patterns. 16.9. Bayesian networks for analysing Burkholderia pseudomallei gene data -- - 17. S-systems. 17.1. Michealis-Menten change law. 17.2. S-system. 17.3. Simplification of an S-system. 17.4. Approaches for structure identification and parameter estimation. 17.5. Steady-state analysis of an S-system. 17.6. Sensitivity of an S-system -- 18. Future directions. 18.1. Multi-source data. 18.2. Gene regulatory network construction. 18.3. Building models using incomplete data. 18.4. Biomarker detection from gene expression data This book covers a wide range of subjects in applying machine learning approaches for bioinformatics projects. The book succeeds on two key unique features. First, it introduces the most widely used machine learning approaches in bioinformatics and discusses, with evaluations from real case studies, how they are used in individual bioinformatics projects. Second, it introduces state-of-the-art bioinformatics research methods. The theoretical parts and the practical parts are well integrated for readers to follow the existing procedures in individual research. Unlike most of the bioinformatics books on the market, the content coverage is not limited to just one subject. A broad spectrum of relevant topics in bioinformatics including systematic data mining and computational systems biology researches are brought together in this book, thereby offering an efficient and convenient platform for teaching purposes. An essential reference for both final year undergraduates and graduate students in universities, as well as a comprehensive handbook for new researchers, this book will also serve as a practical guide for software development in relevant bioinformatics projects |
Beschreibung: | 1 Online-Ressource (xiv, 322 pages) |
ISBN: | 9789814287302 9789814287319 981428730X 9814287318 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043100838 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2010 |||| o||u| ||||||eng d | ||
020 | |a 9789814287302 |9 978-981-4287-30-2 | ||
020 | |a 9789814287319 |c electronic bk. |9 978-981-4287-31-9 | ||
020 | |a 981428730X |9 981-4287-30-X | ||
020 | |a 9814287318 |c electronic bk. |9 981-4287-31-8 | ||
035 | |a (OCoLC)670430124 | ||
035 | |a (DE-599)BVBBV043100838 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 572.80285518 |2 22 | |
100 | 1 | |a Yang, Zheng Rong |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine learning approaches to bioinformatics |c Zheng Rong Yang |
264 | 1 | |a Singapore |b World Scientific |c ©2010 | |
300 | |a 1 Online-Ressource (xiv, 322 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Science, engineering, and biology informatics |v v. 4 | |
500 | |a Includes bibliographical references and index | ||
500 | |a 1. Introduction. 1.1. Brief history of bioinformatics. 1.2. Database application in bioinformatics. 1.3. Web tools and services for sequence homology alignment. 1.4. Pattern analysis. 1.5. The contribution of information technology. 1.6. Chapters -- 2. Introduction to unsupervised learning -- 3. Probability density estimation approaches. 3.1. Histogram approach. 3.2. Parametric approach. 3.3. Non-parametric approach -- 4. Dimension reduction. 4.1. General. 4.2. Principal component analysis. 4.3. An application of PCA. 4.4. Multi-dimensional scaling. 4.5. Application of the Sammon algorithm to gene data -- 5. Cluster analysis. 5.1. Hierarchical clustering. 5.2. K-means. 5.3. Fuzzy C-means. 5.4. Gaussian mixture models. 5.5. Application of clustering algorithms to the Burkholderia pseudomallei gene expression data -- | ||
500 | |a - 6. Self-organising map. 6.1. Vector quantization. 6.2. SOM structure. 6.3. SOM learning algorithm. 6.4. Using SOM for classification. 6.5. Bioinformatics applications of VQ and SOM. 6.6. A case study of gene expression data analysis. 6.7. A case study of sequence data analysis -- 7. Introduction to supervised learning. 7.1. General concepts. 7.2. General definition. 7.3. Model evaluation. 7.4. Data organisation. 7.5. Bayes rule for classification -- 8. Linear/quadratic discriminant analysis and K-nearest neighbour. 8.1. Linear discriminant analysis. 8.2. Generalised discriminant analysis. 8.3. K-nearest neighbour. 8.4. KNN for gene data analysis -- | ||
500 | |a - 9. Classification and regression trees, random forest algorithm. 9.1. Introduction. 9.2. Basic principle for constructing a classification tree. 9.3. Classification and regression tree. 9.4. CART for compound pathway involvement prediction. 9.5. The random forest algorithm. 9.6. RF for analyzing Burkholderia pseudomallei gene expression profiles -- 10. Multi-layer perceptron. 10.1. Introduction. 10.2. Learning theory. 10.3. Learning algorithms. 10.4. Applications to bioinformatics. 10.5. A case study on Burkholderia pseudomallei gene expression data -- 11. Basis function approach and vector machines. 11.1. Introduction. 11.2. Radial-basis function neural network (RBFNN). 11.3. Bio-basis function neural network. 11.4. Support vector machine. 11.5. Relevance vector machine -- 12. Hidden Markov model. 12.1. Markov model. 12.2. Hidden Markov model. 12.3. HMM for sequence classification -- | ||
500 | |a - 13. Feature selection. 13.1. Built-in strategy. 13.2. Exhaustive strategy. 13.3. Heuristic strategy -- orthogonal least square approach. 13.4. Criteria for feature selection -- 14. Feature extraction (biological data coding). 14.1. Molecular sequences. 14.2. Chemical compounds. 14.3. General definition. 14.4. Sequence analysis -- 15. Sequence/structural bioinformatics foundation -- peptide classification. 15.1. Nitration site prediction. 15.2. Plant promoter region prediction -- 16. Gene network -- causal network and Bayesian networks. 16.1. Gene regulatory network. 16.2. Causal networks, networks, graphs. 16.3. A brief review of the probability. 16.4. Discrete Bayesian network. 16.5. Inference with discrete Bayesian network. 16.6. Learning discrete Bayesian network. 16.7. Bayesian networks for gene regulartory networks. 16.8. Bayesian networks for discovering peptide patterns. 16.9. Bayesian networks for analysing Burkholderia pseudomallei gene data -- | ||
500 | |a - 17. S-systems. 17.1. Michealis-Menten change law. 17.2. S-system. 17.3. Simplification of an S-system. 17.4. Approaches for structure identification and parameter estimation. 17.5. Steady-state analysis of an S-system. 17.6. Sensitivity of an S-system -- 18. Future directions. 18.1. Multi-source data. 18.2. Gene regulatory network construction. 18.3. Building models using incomplete data. 18.4. Biomarker detection from gene expression data | ||
500 | |a This book covers a wide range of subjects in applying machine learning approaches for bioinformatics projects. The book succeeds on two key unique features. First, it introduces the most widely used machine learning approaches in bioinformatics and discusses, with evaluations from real case studies, how they are used in individual bioinformatics projects. Second, it introduces state-of-the-art bioinformatics research methods. The theoretical parts and the practical parts are well integrated for readers to follow the existing procedures in individual research. Unlike most of the bioinformatics books on the market, the content coverage is not limited to just one subject. A broad spectrum of relevant topics in bioinformatics including systematic data mining and computational systems biology researches are brought together in this book, thereby offering an efficient and convenient platform for teaching purposes. An essential reference for both final year undergraduates and graduate students in universities, as well as a comprehensive handbook for new researchers, this book will also serve as a practical guide for software development in relevant bioinformatics projects | ||
650 | 4 | |a Natural history | |
650 | 4 | |a Science | |
650 | 7 | |a COMPUTERS / Bioinformatics |2 bisacsh | |
650 | 7 | |a Bioinformatics |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 4 | |a Naturwissenschaft | |
650 | 4 | |a Bioinformatics | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Bioinformatics |v Case studies | |
650 | 4 | |a Machine learning |v Case studies | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bioinformatik |0 (DE-588)4611085-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4522595-3 |a Fallstudiensammlung |2 gnd-content | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Bioinformatik |0 (DE-588)4611085-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340803 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028525030 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340803 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340803 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175510670934016 |
---|---|
any_adam_object | |
author | Yang, Zheng Rong |
author_facet | Yang, Zheng Rong |
author_role | aut |
author_sort | Yang, Zheng Rong |
author_variant | z r y zr zry |
building | Verbundindex |
bvnumber | BV043100838 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)670430124 (DE-599)BVBBV043100838 |
dewey-full | 572.80285518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572.80285518 |
dewey-search | 572.80285518 |
dewey-sort | 3572.80285518 |
dewey-tens | 570 - Biology |
discipline | Biologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07460nmm a2200649zcb4500</leader><controlfield tag="001">BV043100838</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814287302</subfield><subfield code="9">978-981-4287-30-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814287319</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4287-31-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981428730X</subfield><subfield code="9">981-4287-30-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814287318</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4287-31-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)670430124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043100838</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572.80285518</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Zheng Rong</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning approaches to bioinformatics</subfield><subfield code="c">Zheng Rong Yang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">©2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 322 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Science, engineering, and biology informatics</subfield><subfield code="v">v. 4</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction. 1.1. Brief history of bioinformatics. 1.2. Database application in bioinformatics. 1.3. Web tools and services for sequence homology alignment. 1.4. Pattern analysis. 1.5. The contribution of information technology. 1.6. Chapters -- 2. Introduction to unsupervised learning -- 3. Probability density estimation approaches. 3.1. Histogram approach. 3.2. Parametric approach. 3.3. Non-parametric approach -- 4. Dimension reduction. 4.1. General. 4.2. Principal component analysis. 4.3. An application of PCA. 4.4. Multi-dimensional scaling. 4.5. Application of the Sammon algorithm to gene data -- 5. Cluster analysis. 5.1. Hierarchical clustering. 5.2. K-means. 5.3. Fuzzy C-means. 5.4. Gaussian mixture models. 5.5. Application of clustering algorithms to the Burkholderia pseudomallei gene expression data -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 6. Self-organising map. 6.1. Vector quantization. 6.2. SOM structure. 6.3. SOM learning algorithm. 6.4. Using SOM for classification. 6.5. Bioinformatics applications of VQ and SOM. 6.6. A case study of gene expression data analysis. 6.7. A case study of sequence data analysis -- 7. Introduction to supervised learning. 7.1. General concepts. 7.2. General definition. 7.3. Model evaluation. 7.4. Data organisation. 7.5. Bayes rule for classification -- 8. Linear/quadratic discriminant analysis and K-nearest neighbour. 8.1. Linear discriminant analysis. 8.2. Generalised discriminant analysis. 8.3. K-nearest neighbour. 8.4. KNN for gene data analysis -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 9. Classification and regression trees, random forest algorithm. 9.1. Introduction. 9.2. Basic principle for constructing a classification tree. 9.3. Classification and regression tree. 9.4. CART for compound pathway involvement prediction. 9.5. The random forest algorithm. 9.6. RF for analyzing Burkholderia pseudomallei gene expression profiles -- 10. Multi-layer perceptron. 10.1. Introduction. 10.2. Learning theory. 10.3. Learning algorithms. 10.4. Applications to bioinformatics. 10.5. A case study on Burkholderia pseudomallei gene expression data -- 11. Basis function approach and vector machines. 11.1. Introduction. 11.2. Radial-basis function neural network (RBFNN). 11.3. Bio-basis function neural network. 11.4. Support vector machine. 11.5. Relevance vector machine -- 12. Hidden Markov model. 12.1. Markov model. 12.2. Hidden Markov model. 12.3. HMM for sequence classification -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 13. Feature selection. 13.1. Built-in strategy. 13.2. Exhaustive strategy. 13.3. Heuristic strategy -- orthogonal least square approach. 13.4. Criteria for feature selection -- 14. Feature extraction (biological data coding). 14.1. Molecular sequences. 14.2. Chemical compounds. 14.3. General definition. 14.4. Sequence analysis -- 15. Sequence/structural bioinformatics foundation -- peptide classification. 15.1. Nitration site prediction. 15.2. Plant promoter region prediction -- 16. Gene network -- causal network and Bayesian networks. 16.1. Gene regulatory network. 16.2. Causal networks, networks, graphs. 16.3. A brief review of the probability. 16.4. Discrete Bayesian network. 16.5. Inference with discrete Bayesian network. 16.6. Learning discrete Bayesian network. 16.7. Bayesian networks for gene regulartory networks. 16.8. Bayesian networks for discovering peptide patterns. 16.9. Bayesian networks for analysing Burkholderia pseudomallei gene data -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 17. S-systems. 17.1. Michealis-Menten change law. 17.2. S-system. 17.3. Simplification of an S-system. 17.4. Approaches for structure identification and parameter estimation. 17.5. Steady-state analysis of an S-system. 17.6. Sensitivity of an S-system -- 18. Future directions. 18.1. Multi-source data. 18.2. Gene regulatory network construction. 18.3. Building models using incomplete data. 18.4. Biomarker detection from gene expression data</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book covers a wide range of subjects in applying machine learning approaches for bioinformatics projects. The book succeeds on two key unique features. First, it introduces the most widely used machine learning approaches in bioinformatics and discusses, with evaluations from real case studies, how they are used in individual bioinformatics projects. Second, it introduces state-of-the-art bioinformatics research methods. The theoretical parts and the practical parts are well integrated for readers to follow the existing procedures in individual research. Unlike most of the bioinformatics books on the market, the content coverage is not limited to just one subject. A broad spectrum of relevant topics in bioinformatics including systematic data mining and computational systems biology researches are brought together in this book, thereby offering an efficient and convenient platform for teaching purposes. An essential reference for both final year undergraduates and graduate students in universities, as well as a comprehensive handbook for new researchers, this book will also serve as a practical guide for software development in relevant bioinformatics projects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural history</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Bioinformatics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bioinformatics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioinformatics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioinformatics</subfield><subfield code="v">Case studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="v">Case studies</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bioinformatik</subfield><subfield code="0">(DE-588)4611085-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4522595-3</subfield><subfield code="a">Fallstudiensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bioinformatik</subfield><subfield code="0">(DE-588)4611085-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340803</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028525030</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340803</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340803</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4522595-3 Fallstudiensammlung gnd-content |
genre_facet | Fallstudiensammlung |
id | DE-604.BV043100838 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:26Z |
institution | BVB |
isbn | 9789814287302 9789814287319 981428730X 9814287318 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028525030 |
oclc_num | 670430124 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiv, 322 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific |
record_format | marc |
series2 | Science, engineering, and biology informatics |
spelling | Yang, Zheng Rong Verfasser aut Machine learning approaches to bioinformatics Zheng Rong Yang Singapore World Scientific ©2010 1 Online-Ressource (xiv, 322 pages) txt rdacontent c rdamedia cr rdacarrier Science, engineering, and biology informatics v. 4 Includes bibliographical references and index 1. Introduction. 1.1. Brief history of bioinformatics. 1.2. Database application in bioinformatics. 1.3. Web tools and services for sequence homology alignment. 1.4. Pattern analysis. 1.5. The contribution of information technology. 1.6. Chapters -- 2. Introduction to unsupervised learning -- 3. Probability density estimation approaches. 3.1. Histogram approach. 3.2. Parametric approach. 3.3. Non-parametric approach -- 4. Dimension reduction. 4.1. General. 4.2. Principal component analysis. 4.3. An application of PCA. 4.4. Multi-dimensional scaling. 4.5. Application of the Sammon algorithm to gene data -- 5. Cluster analysis. 5.1. Hierarchical clustering. 5.2. K-means. 5.3. Fuzzy C-means. 5.4. Gaussian mixture models. 5.5. Application of clustering algorithms to the Burkholderia pseudomallei gene expression data -- - 6. Self-organising map. 6.1. Vector quantization. 6.2. SOM structure. 6.3. SOM learning algorithm. 6.4. Using SOM for classification. 6.5. Bioinformatics applications of VQ and SOM. 6.6. A case study of gene expression data analysis. 6.7. A case study of sequence data analysis -- 7. Introduction to supervised learning. 7.1. General concepts. 7.2. General definition. 7.3. Model evaluation. 7.4. Data organisation. 7.5. Bayes rule for classification -- 8. Linear/quadratic discriminant analysis and K-nearest neighbour. 8.1. Linear discriminant analysis. 8.2. Generalised discriminant analysis. 8.3. K-nearest neighbour. 8.4. KNN for gene data analysis -- - 9. Classification and regression trees, random forest algorithm. 9.1. Introduction. 9.2. Basic principle for constructing a classification tree. 9.3. Classification and regression tree. 9.4. CART for compound pathway involvement prediction. 9.5. The random forest algorithm. 9.6. RF for analyzing Burkholderia pseudomallei gene expression profiles -- 10. Multi-layer perceptron. 10.1. Introduction. 10.2. Learning theory. 10.3. Learning algorithms. 10.4. Applications to bioinformatics. 10.5. A case study on Burkholderia pseudomallei gene expression data -- 11. Basis function approach and vector machines. 11.1. Introduction. 11.2. Radial-basis function neural network (RBFNN). 11.3. Bio-basis function neural network. 11.4. Support vector machine. 11.5. Relevance vector machine -- 12. Hidden Markov model. 12.1. Markov model. 12.2. Hidden Markov model. 12.3. HMM for sequence classification -- - 13. Feature selection. 13.1. Built-in strategy. 13.2. Exhaustive strategy. 13.3. Heuristic strategy -- orthogonal least square approach. 13.4. Criteria for feature selection -- 14. Feature extraction (biological data coding). 14.1. Molecular sequences. 14.2. Chemical compounds. 14.3. General definition. 14.4. Sequence analysis -- 15. Sequence/structural bioinformatics foundation -- peptide classification. 15.1. Nitration site prediction. 15.2. Plant promoter region prediction -- 16. Gene network -- causal network and Bayesian networks. 16.1. Gene regulatory network. 16.2. Causal networks, networks, graphs. 16.3. A brief review of the probability. 16.4. Discrete Bayesian network. 16.5. Inference with discrete Bayesian network. 16.6. Learning discrete Bayesian network. 16.7. Bayesian networks for gene regulartory networks. 16.8. Bayesian networks for discovering peptide patterns. 16.9. Bayesian networks for analysing Burkholderia pseudomallei gene data -- - 17. S-systems. 17.1. Michealis-Menten change law. 17.2. S-system. 17.3. Simplification of an S-system. 17.4. Approaches for structure identification and parameter estimation. 17.5. Steady-state analysis of an S-system. 17.6. Sensitivity of an S-system -- 18. Future directions. 18.1. Multi-source data. 18.2. Gene regulatory network construction. 18.3. Building models using incomplete data. 18.4. Biomarker detection from gene expression data This book covers a wide range of subjects in applying machine learning approaches for bioinformatics projects. The book succeeds on two key unique features. First, it introduces the most widely used machine learning approaches in bioinformatics and discusses, with evaluations from real case studies, how they are used in individual bioinformatics projects. Second, it introduces state-of-the-art bioinformatics research methods. The theoretical parts and the practical parts are well integrated for readers to follow the existing procedures in individual research. Unlike most of the bioinformatics books on the market, the content coverage is not limited to just one subject. A broad spectrum of relevant topics in bioinformatics including systematic data mining and computational systems biology researches are brought together in this book, thereby offering an efficient and convenient platform for teaching purposes. An essential reference for both final year undergraduates and graduate students in universities, as well as a comprehensive handbook for new researchers, this book will also serve as a practical guide for software development in relevant bioinformatics projects Natural history Science COMPUTERS / Bioinformatics bisacsh Bioinformatics fast Machine learning fast Naturwissenschaft Bioinformatics Machine learning Bioinformatics Case studies Machine learning Case studies Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Bioinformatik (DE-588)4611085-9 gnd rswk-swf (DE-588)4522595-3 Fallstudiensammlung gnd-content Maschinelles Lernen (DE-588)4193754-5 s Bioinformatik (DE-588)4611085-9 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340803 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Yang, Zheng Rong Machine learning approaches to bioinformatics Natural history Science COMPUTERS / Bioinformatics bisacsh Bioinformatics fast Machine learning fast Naturwissenschaft Bioinformatics Machine learning Bioinformatics Case studies Machine learning Case studies Maschinelles Lernen (DE-588)4193754-5 gnd Bioinformatik (DE-588)4611085-9 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4611085-9 (DE-588)4522595-3 |
title | Machine learning approaches to bioinformatics |
title_auth | Machine learning approaches to bioinformatics |
title_exact_search | Machine learning approaches to bioinformatics |
title_full | Machine learning approaches to bioinformatics Zheng Rong Yang |
title_fullStr | Machine learning approaches to bioinformatics Zheng Rong Yang |
title_full_unstemmed | Machine learning approaches to bioinformatics Zheng Rong Yang |
title_short | Machine learning approaches to bioinformatics |
title_sort | machine learning approaches to bioinformatics |
topic | Natural history Science COMPUTERS / Bioinformatics bisacsh Bioinformatics fast Machine learning fast Naturwissenschaft Bioinformatics Machine learning Bioinformatics Case studies Machine learning Case studies Maschinelles Lernen (DE-588)4193754-5 gnd Bioinformatik (DE-588)4611085-9 gnd |
topic_facet | Natural history Science COMPUTERS / Bioinformatics Bioinformatics Machine learning Naturwissenschaft Bioinformatics Case studies Machine learning Case studies Maschinelles Lernen Bioinformatik Fallstudiensammlung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340803 |
work_keys_str_mv | AT yangzhengrong machinelearningapproachestobioinformatics |