Introduction to harmonic analysis and generalized Gelfand pairs:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
Walter De Gruyter
©2009
|
Schriftenreihe: | De Gruyter studies in mathematics
36 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 217-220) and index Frontmatter; Contents; 1 Fourier Series; 2 Fourier Integrals; 3 Locally Compact Groups; 4 Haar Measures; 5 Harmonic Analysis on Locally Compact Abelian Groups; 6 Classical Theory of Gelfand Pairs; 7 Examples of Gelfand Pairs; 8 Theory of Generalized Gelfand Pairs; 9 Examples of Generalized Gelfand Pairs; Backmatter Harmonic analysis is the branch of mathematics that studies the representation of functions or signals as the superposition of basic waves, and Gelfand pairs refer to pairs of groups satisfying certain properties on restricted representations. This book contains written material of lectures on the topic which might serve as an introduction to the topic |
Beschreibung: | 1 Online-Ressource (ix, 223 pages) |
ISBN: | 3110220199 3110220202 9783110220193 9783110220209 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043100770 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2009 |||| o||u| ||||||eng d | ||
020 | |a 3110220199 |9 3-11-022019-9 | ||
020 | |a 3110220202 |c electronic bk. |9 3-11-022020-2 | ||
020 | |a 9783110220193 |9 978-3-11-022019-3 | ||
020 | |a 9783110220209 |c electronic bk. |9 978-3-11-022020-9 | ||
035 | |a (OCoLC)644227926 | ||
035 | |a (DE-599)BVBBV043100770 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515 |2 22 | |
100 | 1 | |a Dijk, Gerrit van |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to harmonic analysis and generalized Gelfand pairs |c Gerrit van Dijik |
264 | 1 | |a Berlin |b Walter De Gruyter |c ©2009 | |
300 | |a 1 Online-Ressource (ix, 223 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter studies in mathematics |v 36 | |
500 | |a Includes bibliographical references (pages 217-220) and index | ||
500 | |a Frontmatter; Contents; 1 Fourier Series; 2 Fourier Integrals; 3 Locally Compact Groups; 4 Haar Measures; 5 Harmonic Analysis on Locally Compact Abelian Groups; 6 Classical Theory of Gelfand Pairs; 7 Examples of Gelfand Pairs; 8 Theory of Generalized Gelfand Pairs; 9 Examples of Generalized Gelfand Pairs; Backmatter | ||
500 | |a Harmonic analysis is the branch of mathematics that studies the representation of functions or signals as the superposition of basic waves, and Gelfand pairs refer to pairs of groups satisfying certain properties on restricted representations. This book contains written material of lectures on the topic which might serve as an introduction to the topic | ||
650 | 4 | |a Mathematics | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 7 | |a Fourier-integralen |2 gtt | |
650 | 7 | |a Fourier-reeksen |2 gtt | |
650 | 7 | |a Topologische groepen |2 gtt | |
650 | 7 | |a Harmonische analyse |2 gtt | |
650 | 7 | |a Convolutie |2 gtt | |
650 | 7 | |a Commutatieve algebra's |2 gtt | |
650 | 7 | |a Abstrakte harmonische Analysis |2 swd | |
650 | 7 | |a Fourier analysis |2 fast | |
650 | 7 | |a Harmonic analysis |2 fast | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Fourier analysis | |
650 | 0 | 7 | |a Abstrakte harmonische Analysis |0 (DE-588)4821471-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Abstrakte harmonische Analysis |0 (DE-588)4821471-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=317758 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028524962 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=317758 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=317758 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175510562930688 |
---|---|
any_adam_object | |
author | Dijk, Gerrit van |
author_facet | Dijk, Gerrit van |
author_role | aut |
author_sort | Dijk, Gerrit van |
author_variant | g v d gv gvd |
building | Verbundindex |
bvnumber | BV043100770 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)644227926 (DE-599)BVBBV043100770 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03137nmm a2200625zcb4500</leader><controlfield tag="001">BV043100770</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110220199</subfield><subfield code="9">3-11-022019-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110220202</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">3-11-022020-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110220193</subfield><subfield code="9">978-3-11-022019-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110220209</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-3-11-022020-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)644227926</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043100770</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dijk, Gerrit van</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to harmonic analysis and generalized Gelfand pairs</subfield><subfield code="c">Gerrit van Dijik</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Walter De Gruyter</subfield><subfield code="c">©2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 223 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">36</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 217-220) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Frontmatter; Contents; 1 Fourier Series; 2 Fourier Integrals; 3 Locally Compact Groups; 4 Haar Measures; 5 Harmonic Analysis on Locally Compact Abelian Groups; 6 Classical Theory of Gelfand Pairs; 7 Examples of Gelfand Pairs; 8 Theory of Generalized Gelfand Pairs; 9 Examples of Generalized Gelfand Pairs; Backmatter</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Harmonic analysis is the branch of mathematics that studies the representation of functions or signals as the superposition of basic waves, and Gelfand pairs refer to pairs of groups satisfying certain properties on restricted representations. This book contains written material of lectures on the topic which might serve as an introduction to the topic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier-integralen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier-reeksen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologische groepen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonische analyse</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convolutie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Commutatieve algebra's</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Abstrakte harmonische Analysis</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abstrakte harmonische Analysis</subfield><subfield code="0">(DE-588)4821471-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Abstrakte harmonische Analysis</subfield><subfield code="0">(DE-588)4821471-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=317758</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028524962</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=317758</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=317758</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043100770 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:26Z |
institution | BVB |
isbn | 3110220199 3110220202 9783110220193 9783110220209 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028524962 |
oclc_num | 644227926 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (ix, 223 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Walter De Gruyter |
record_format | marc |
series2 | De Gruyter studies in mathematics |
spelling | Dijk, Gerrit van Verfasser aut Introduction to harmonic analysis and generalized Gelfand pairs Gerrit van Dijik Berlin Walter De Gruyter ©2009 1 Online-Ressource (ix, 223 pages) txt rdacontent c rdamedia cr rdacarrier De Gruyter studies in mathematics 36 Includes bibliographical references (pages 217-220) and index Frontmatter; Contents; 1 Fourier Series; 2 Fourier Integrals; 3 Locally Compact Groups; 4 Haar Measures; 5 Harmonic Analysis on Locally Compact Abelian Groups; 6 Classical Theory of Gelfand Pairs; 7 Examples of Gelfand Pairs; 8 Theory of Generalized Gelfand Pairs; 9 Examples of Generalized Gelfand Pairs; Backmatter Harmonic analysis is the branch of mathematics that studies the representation of functions or signals as the superposition of basic waves, and Gelfand pairs refer to pairs of groups satisfying certain properties on restricted representations. This book contains written material of lectures on the topic which might serve as an introduction to the topic Mathematics MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Fourier-integralen gtt Fourier-reeksen gtt Topologische groepen gtt Harmonische analyse gtt Convolutie gtt Commutatieve algebra's gtt Abstrakte harmonische Analysis swd Fourier analysis fast Harmonic analysis fast Mathematik Harmonic analysis Fourier analysis Abstrakte harmonische Analysis (DE-588)4821471-1 gnd rswk-swf Abstrakte harmonische Analysis (DE-588)4821471-1 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=317758 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dijk, Gerrit van Introduction to harmonic analysis and generalized Gelfand pairs Mathematics MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Fourier-integralen gtt Fourier-reeksen gtt Topologische groepen gtt Harmonische analyse gtt Convolutie gtt Commutatieve algebra's gtt Abstrakte harmonische Analysis swd Fourier analysis fast Harmonic analysis fast Mathematik Harmonic analysis Fourier analysis Abstrakte harmonische Analysis (DE-588)4821471-1 gnd |
subject_GND | (DE-588)4821471-1 |
title | Introduction to harmonic analysis and generalized Gelfand pairs |
title_auth | Introduction to harmonic analysis and generalized Gelfand pairs |
title_exact_search | Introduction to harmonic analysis and generalized Gelfand pairs |
title_full | Introduction to harmonic analysis and generalized Gelfand pairs Gerrit van Dijik |
title_fullStr | Introduction to harmonic analysis and generalized Gelfand pairs Gerrit van Dijik |
title_full_unstemmed | Introduction to harmonic analysis and generalized Gelfand pairs Gerrit van Dijik |
title_short | Introduction to harmonic analysis and generalized Gelfand pairs |
title_sort | introduction to harmonic analysis and generalized gelfand pairs |
topic | Mathematics MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Fourier-integralen gtt Fourier-reeksen gtt Topologische groepen gtt Harmonische analyse gtt Convolutie gtt Commutatieve algebra's gtt Abstrakte harmonische Analysis swd Fourier analysis fast Harmonic analysis fast Mathematik Harmonic analysis Fourier analysis Abstrakte harmonische Analysis (DE-588)4821471-1 gnd |
topic_facet | Mathematics MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Fourier-integralen Fourier-reeksen Topologische groepen Harmonische analyse Convolutie Commutatieve algebra's Abstrakte harmonische Analysis Fourier analysis Harmonic analysis Mathematik |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=317758 |
work_keys_str_mv | AT dijkgerritvan introductiontoharmonicanalysisandgeneralizedgelfandpairs |