Clifford algebra: a computational tool for physicists
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York
Oxford University Press
1997
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index Cover -- Contents -- Introduction -- 146; A Taste of Clifford Algebra in Euclidean 345;Space -- 146;1 Reflections44; Rotations44; and Quaternions in E[sup40;341;] via Clifford Algebra -- 146;2 39;The 438;35;96059; Periodicity of the Rotation Operator -- 146;342; The Spinning Top 40;One Point Fixed41;8212;Without Euler Angles -- A Sample of Clifford Algebra in Minkowski 445;Space -- 1 A Small Dose of Special Relativity -- 2 Mass44; Energy44; and Momentum -- 346; Clifford Algebra for Flat n45;Dimensional Spaces -- 346;1 Clifford Numbers in n45;Dimensional Euclidean or Pseudo45;Euclidean Spaces -- 346;2 Dirac Matrices in Real Euclidean or Pseudo45;Euclidean Spaces -- 346;3 The Metric Tensor and the Scalar Product for 145;Vectors -- 346;4 The Exterior Product for p45;Vectors and the Scalar Product for Clifford Numbers -- 446; Curved Spaces Embedded in Higher Dimensional Flat Spaces -- 446;0 Why you may wish to skip Chapter 4 -- - 446;1 Gaussian Curvature and Parallel Transport on Two45;Dimensional Surfaces in E[sup40;341;] -- 446;2 The Operator [omitted][sub40;v41;] on an m45;Dimensional Surface Embedded in an n45;Dimensional Flat Space -- 446;3 Parallel Transport on an m45;Dimensional Surface Embedded in an n45;Dimensional Flat Space -- 546; The Use of Fock8211;Ivanenko 245;Vectors to obtain the Schwarzschild Metric -- 546;1 The Operator [omitted][sub40;38;35;94559;41;] and Dirac Matrices in Curved Spaces -- 546;2 Connection Coefficients and Fock8211;Ivanenko 245;Vectors -- 546;3 The Riemann Curvature Tensor and its Symmetries -- 546;4 The Use of Fock8211;Ivanenko 245;Vectors to Compute Curvature 245;Forms -- 546;542; The Interpretation of Curvature 245;Forms as Infinitesimal Rotation Operators -- 642;46; The Schwarzschild Metric via Fock8211;Ivanenko 245;Vectors -- 646;1 The Use of Fock8211;Ivanenko 245;Vectors to Determine the Schwarzschild Metric -- 646;2 The Precession of Perihelion for Mercury -- - 746; Two Differential Operators -- 746;1 The Exterior Derivative d and the Codifferential Operator 38;35;94859; Related to the Operator [omitted] 61; 38;35;94759;[sup40;J41;][omitted][sub40;J41;] -- 746;2 Maxwell39;s Equations in Flat Space -- 746;342; Is Gravity a Yang8211;Mills Field63; -- 746;442; The Migma Chamber of Bogdan Maglich -- 746;542; The Generalized Stake39;s Theorem -- 846;42; Dirac39;s Equation for the Electron -- 846;1 Currents and Dipoles in Curved Space Resulting from Dirac39;s Equation for the Electron -- 846;2 Clifford Solutions for the Free Electron in Flat Space -- 846;3 A Canonical Form for Solutions to Dirac39;s Equation in Flat Space -- 846;4 Spherical Harmonic Clifford Functions -- 846;5 Clifford Solutions of Dirac39;s Equation for Hydrogen45;like Atoms -- 946; The Kerr Metric by an Elementary Brute Force Method -- 946;1 The Kerr Metric -- 1046;42; Petrov39;s Canonical Forms for the Weyl Tensor and Another Approach to the Kerr Metric -- - 1046;1 Petrov39;s Canonical Forms for the Weyl Tensor -- 1046;2 Principal Null Directions -- 1046;3 The Kerr Metric Revisited via its Petrov Matrix -- 1146;42; Matrix Representations and Classifications of Clifford Algebras -- 1146;1 Matrix Representations of Clifford Algebras -- tidtid52 Clifford algebras have become an indispensable tool for physicists at the cutting edge of theoretical investigations. Its applications in physics range from special relativity and the rotating top at one end of the spectrum, to general relativity and Dirac's equation for the electron at the other. Clifford algebras have become a virtual necessity in some areas of physics and their use is expanding in other areas; for example, in algebraic manipulations involving Dirac matrices in quantum thermodynamics, in Kaluza-Klein theories and dimensional renormalization theories, and in the formation of superstring theories. The book is aimed at beginning graduate physics and math students learning mathematical physics, relativity, quantum physics, or applied mathematics; and mathematical physicists |
Beschreibung: | 1 Online-Ressource (xv, 335 p.) |
ISBN: | 0195098242 1280528125 142941555X 9780195098242 9781280528125 9781429415552 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043100674 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s1997 |||| o||u| ||||||eng d | ||
020 | |a 0195098242 |c alk. paper |9 0-19-509824-2 | ||
020 | |a 0195098242 |c alk. paper |9 0-19-509824-2 | ||
020 | |a 1280528125 |9 1-280-52812-5 | ||
020 | |a 142941555X |c electronic bk. |9 1-4294-1555-X | ||
020 | |a 9780195098242 |c alk. paper |9 978-0-19-509824-2 | ||
020 | |a 9781280528125 |9 978-1-280-52812-5 | ||
020 | |a 9781429415552 |c electronic bk. |9 978-1-4294-1555-2 | ||
035 | |a (OCoLC)560383029 | ||
035 | |a (DE-599)BVBBV043100674 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.1/5257 |2 20 | |
100 | 1 | |a Snygg, John |e Verfasser |4 aut | |
245 | 1 | 0 | |a Clifford algebra |b a computational tool for physicists |c John Snygg |
264 | 1 | |a New York |b Oxford University Press |c 1997 | |
300 | |a 1 Online-Ressource (xv, 335 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Cover -- Contents -- Introduction -- 146; A Taste of Clifford Algebra in Euclidean 345;Space -- 146;1 Reflections44; Rotations44; and Quaternions in E[sup40;341;] via Clifford Algebra -- 146;2 39;The 438;35;96059; Periodicity of the Rotation Operator -- 146;342; The Spinning Top 40;One Point Fixed41;8212;Without Euler Angles -- A Sample of Clifford Algebra in Minkowski 445;Space -- 1 A Small Dose of Special Relativity -- 2 Mass44; Energy44; and Momentum -- 346; Clifford Algebra for Flat n45;Dimensional Spaces -- 346;1 Clifford Numbers in n45;Dimensional Euclidean or Pseudo45;Euclidean Spaces -- 346;2 Dirac Matrices in Real Euclidean or Pseudo45;Euclidean Spaces -- 346;3 The Metric Tensor and the Scalar Product for 145;Vectors -- 346;4 The Exterior Product for p45;Vectors and the Scalar Product for Clifford Numbers -- 446; Curved Spaces Embedded in Higher Dimensional Flat Spaces -- 446;0 Why you may wish to skip Chapter 4 -- | ||
500 | |a - 446;1 Gaussian Curvature and Parallel Transport on Two45;Dimensional Surfaces in E[sup40;341;] -- 446;2 The Operator [omitted][sub40;v41;] on an m45;Dimensional Surface Embedded in an n45;Dimensional Flat Space -- 446;3 Parallel Transport on an m45;Dimensional Surface Embedded in an n45;Dimensional Flat Space -- 546; The Use of Fock8211;Ivanenko 245;Vectors to obtain the Schwarzschild Metric -- 546;1 The Operator [omitted][sub40;38;35;94559;41;] and Dirac Matrices in Curved Spaces -- 546;2 Connection Coefficients and Fock8211;Ivanenko 245;Vectors -- 546;3 The Riemann Curvature Tensor and its Symmetries -- 546;4 The Use of Fock8211;Ivanenko 245;Vectors to Compute Curvature 245;Forms -- 546;542; The Interpretation of Curvature 245;Forms as Infinitesimal Rotation Operators -- 642;46; The Schwarzschild Metric via Fock8211;Ivanenko 245;Vectors -- 646;1 The Use of Fock8211;Ivanenko 245;Vectors to Determine the Schwarzschild Metric -- 646;2 The Precession of Perihelion for Mercury -- | ||
500 | |a - 746; Two Differential Operators -- 746;1 The Exterior Derivative d and the Codifferential Operator 38;35;94859; Related to the Operator [omitted] 61; 38;35;94759;[sup40;J41;][omitted][sub40;J41;] -- 746;2 Maxwell39;s Equations in Flat Space -- 746;342; Is Gravity a Yang8211;Mills Field63; -- 746;442; The Migma Chamber of Bogdan Maglich -- 746;542; The Generalized Stake39;s Theorem -- 846;42; Dirac39;s Equation for the Electron -- 846;1 Currents and Dipoles in Curved Space Resulting from Dirac39;s Equation for the Electron -- 846;2 Clifford Solutions for the Free Electron in Flat Space -- 846;3 A Canonical Form for Solutions to Dirac39;s Equation in Flat Space -- 846;4 Spherical Harmonic Clifford Functions -- 846;5 Clifford Solutions of Dirac39;s Equation for Hydrogen45;like Atoms -- 946; The Kerr Metric by an Elementary Brute Force Method -- 946;1 The Kerr Metric -- 1046;42; Petrov39;s Canonical Forms for the Weyl Tensor and Another Approach to the Kerr Metric -- | ||
500 | |a - 1046;1 Petrov39;s Canonical Forms for the Weyl Tensor -- 1046;2 Principal Null Directions -- 1046;3 The Kerr Metric Revisited via its Petrov Matrix -- 1146;42; Matrix Representations and Classifications of Clifford Algebras -- 1146;1 Matrix Representations of Clifford Algebras -- tidtid52 | ||
500 | |a Clifford algebras have become an indispensable tool for physicists at the cutting edge of theoretical investigations. Its applications in physics range from special relativity and the rotating top at one end of the spectrum, to general relativity and Dirac's equation for the electron at the other. Clifford algebras have become a virtual necessity in some areas of physics and their use is expanding in other areas; for example, in algebraic manipulations involving Dirac matrices in quantum thermodynamics, in Kaluza-Klein theories and dimensional renormalization theories, and in the formation of superstring theories. The book is aimed at beginning graduate physics and math students learning mathematical physics, relativity, quantum physics, or applied mathematics; and mathematical physicists | ||
650 | 7 | |a SCIENCE / Physics / Mathematical & Computational |2 bisacsh | |
650 | 7 | |a Clifford algebras |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Clifford algebras | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Clifford-Algebra |0 (DE-588)4199958-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Clifford-Algebra |0 (DE-588)4199958-7 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=176378 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028524866 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=176378 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=176378 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175510364749824 |
---|---|
any_adam_object | |
author | Snygg, John |
author_facet | Snygg, John |
author_role | aut |
author_sort | Snygg, John |
author_variant | j s js |
building | Verbundindex |
bvnumber | BV043100674 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)560383029 (DE-599)BVBBV043100674 |
dewey-full | 530.1/5257 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1/5257 |
dewey-search | 530.1/5257 |
dewey-sort | 3530.1 45257 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06386nmm a2200601zc 4500</leader><controlfield tag="001">BV043100674</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0195098242</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-19-509824-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0195098242</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-19-509824-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280528125</subfield><subfield code="9">1-280-52812-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">142941555X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4294-1555-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780195098242</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-0-19-509824-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280528125</subfield><subfield code="9">978-1-280-52812-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781429415552</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4294-1555-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)560383029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043100674</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1/5257</subfield><subfield code="2">20</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Snygg, John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Clifford algebra</subfield><subfield code="b">a computational tool for physicists</subfield><subfield code="c">John Snygg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 335 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover -- Contents -- Introduction -- 146; A Taste of Clifford Algebra in Euclidean 345;Space -- 146;1 Reflections44; Rotations44; and Quaternions in E[sup40;341;] via Clifford Algebra -- 146;2 39;The 438;35;96059; Periodicity of the Rotation Operator -- 146;342; The Spinning Top 40;One Point Fixed41;8212;Without Euler Angles -- A Sample of Clifford Algebra in Minkowski 445;Space -- 1 A Small Dose of Special Relativity -- 2 Mass44; Energy44; and Momentum -- 346; Clifford Algebra for Flat n45;Dimensional Spaces -- 346;1 Clifford Numbers in n45;Dimensional Euclidean or Pseudo45;Euclidean Spaces -- 346;2 Dirac Matrices in Real Euclidean or Pseudo45;Euclidean Spaces -- 346;3 The Metric Tensor and the Scalar Product for 145;Vectors -- 346;4 The Exterior Product for p45;Vectors and the Scalar Product for Clifford Numbers -- 446; Curved Spaces Embedded in Higher Dimensional Flat Spaces -- 446;0 Why you may wish to skip Chapter 4 -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 446;1 Gaussian Curvature and Parallel Transport on Two45;Dimensional Surfaces in E[sup40;341;] -- 446;2 The Operator [omitted][sub40;v41;] on an m45;Dimensional Surface Embedded in an n45;Dimensional Flat Space -- 446;3 Parallel Transport on an m45;Dimensional Surface Embedded in an n45;Dimensional Flat Space -- 546; The Use of Fock8211;Ivanenko 245;Vectors to obtain the Schwarzschild Metric -- 546;1 The Operator [omitted][sub40;38;35;94559;41;] and Dirac Matrices in Curved Spaces -- 546;2 Connection Coefficients and Fock8211;Ivanenko 245;Vectors -- 546;3 The Riemann Curvature Tensor and its Symmetries -- 546;4 The Use of Fock8211;Ivanenko 245;Vectors to Compute Curvature 245;Forms -- 546;542; The Interpretation of Curvature 245;Forms as Infinitesimal Rotation Operators -- 642;46; The Schwarzschild Metric via Fock8211;Ivanenko 245;Vectors -- 646;1 The Use of Fock8211;Ivanenko 245;Vectors to Determine the Schwarzschild Metric -- 646;2 The Precession of Perihelion for Mercury -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 746; Two Differential Operators -- 746;1 The Exterior Derivative d and the Codifferential Operator 38;35;94859; Related to the Operator [omitted] 61; 38;35;94759;[sup40;J41;][omitted][sub40;J41;] -- 746;2 Maxwell39;s Equations in Flat Space -- 746;342; Is Gravity a Yang8211;Mills Field63; -- 746;442; The Migma Chamber of Bogdan Maglich -- 746;542; The Generalized Stake39;s Theorem -- 846;42; Dirac39;s Equation for the Electron -- 846;1 Currents and Dipoles in Curved Space Resulting from Dirac39;s Equation for the Electron -- 846;2 Clifford Solutions for the Free Electron in Flat Space -- 846;3 A Canonical Form for Solutions to Dirac39;s Equation in Flat Space -- 846;4 Spherical Harmonic Clifford Functions -- 846;5 Clifford Solutions of Dirac39;s Equation for Hydrogen45;like Atoms -- 946; The Kerr Metric by an Elementary Brute Force Method -- 946;1 The Kerr Metric -- 1046;42; Petrov39;s Canonical Forms for the Weyl Tensor and Another Approach to the Kerr Metric -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 1046;1 Petrov39;s Canonical Forms for the Weyl Tensor -- 1046;2 Principal Null Directions -- 1046;3 The Kerr Metric Revisited via its Petrov Matrix -- 1146;42; Matrix Representations and Classifications of Clifford Algebras -- 1146;1 Matrix Representations of Clifford Algebras -- tidtid52</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Clifford algebras have become an indispensable tool for physicists at the cutting edge of theoretical investigations. Its applications in physics range from special relativity and the rotating top at one end of the spectrum, to general relativity and Dirac's equation for the electron at the other. Clifford algebras have become a virtual necessity in some areas of physics and their use is expanding in other areas; for example, in algebraic manipulations involving Dirac matrices in quantum thermodynamics, in Kaluza-Klein theories and dimensional renormalization theories, and in the formation of superstring theories. The book is aimed at beginning graduate physics and math students learning mathematical physics, relativity, quantum physics, or applied mathematics; and mathematical physicists</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / Mathematical & Computational</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Clifford algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clifford algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=176378</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028524866</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=176378</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=176378</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043100674 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:26Z |
institution | BVB |
isbn | 0195098242 1280528125 142941555X 9780195098242 9781280528125 9781429415552 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028524866 |
oclc_num | 560383029 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xv, 335 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Oxford University Press |
record_format | marc |
spelling | Snygg, John Verfasser aut Clifford algebra a computational tool for physicists John Snygg New York Oxford University Press 1997 1 Online-Ressource (xv, 335 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index Cover -- Contents -- Introduction -- 146; A Taste of Clifford Algebra in Euclidean 345;Space -- 146;1 Reflections44; Rotations44; and Quaternions in E[sup40;341;] via Clifford Algebra -- 146;2 39;The 438;35;96059; Periodicity of the Rotation Operator -- 146;342; The Spinning Top 40;One Point Fixed41;8212;Without Euler Angles -- A Sample of Clifford Algebra in Minkowski 445;Space -- 1 A Small Dose of Special Relativity -- 2 Mass44; Energy44; and Momentum -- 346; Clifford Algebra for Flat n45;Dimensional Spaces -- 346;1 Clifford Numbers in n45;Dimensional Euclidean or Pseudo45;Euclidean Spaces -- 346;2 Dirac Matrices in Real Euclidean or Pseudo45;Euclidean Spaces -- 346;3 The Metric Tensor and the Scalar Product for 145;Vectors -- 346;4 The Exterior Product for p45;Vectors and the Scalar Product for Clifford Numbers -- 446; Curved Spaces Embedded in Higher Dimensional Flat Spaces -- 446;0 Why you may wish to skip Chapter 4 -- - 446;1 Gaussian Curvature and Parallel Transport on Two45;Dimensional Surfaces in E[sup40;341;] -- 446;2 The Operator [omitted][sub40;v41;] on an m45;Dimensional Surface Embedded in an n45;Dimensional Flat Space -- 446;3 Parallel Transport on an m45;Dimensional Surface Embedded in an n45;Dimensional Flat Space -- 546; The Use of Fock8211;Ivanenko 245;Vectors to obtain the Schwarzschild Metric -- 546;1 The Operator [omitted][sub40;38;35;94559;41;] and Dirac Matrices in Curved Spaces -- 546;2 Connection Coefficients and Fock8211;Ivanenko 245;Vectors -- 546;3 The Riemann Curvature Tensor and its Symmetries -- 546;4 The Use of Fock8211;Ivanenko 245;Vectors to Compute Curvature 245;Forms -- 546;542; The Interpretation of Curvature 245;Forms as Infinitesimal Rotation Operators -- 642;46; The Schwarzschild Metric via Fock8211;Ivanenko 245;Vectors -- 646;1 The Use of Fock8211;Ivanenko 245;Vectors to Determine the Schwarzschild Metric -- 646;2 The Precession of Perihelion for Mercury -- - 746; Two Differential Operators -- 746;1 The Exterior Derivative d and the Codifferential Operator 38;35;94859; Related to the Operator [omitted] 61; 38;35;94759;[sup40;J41;][omitted][sub40;J41;] -- 746;2 Maxwell39;s Equations in Flat Space -- 746;342; Is Gravity a Yang8211;Mills Field63; -- 746;442; The Migma Chamber of Bogdan Maglich -- 746;542; The Generalized Stake39;s Theorem -- 846;42; Dirac39;s Equation for the Electron -- 846;1 Currents and Dipoles in Curved Space Resulting from Dirac39;s Equation for the Electron -- 846;2 Clifford Solutions for the Free Electron in Flat Space -- 846;3 A Canonical Form for Solutions to Dirac39;s Equation in Flat Space -- 846;4 Spherical Harmonic Clifford Functions -- 846;5 Clifford Solutions of Dirac39;s Equation for Hydrogen45;like Atoms -- 946; The Kerr Metric by an Elementary Brute Force Method -- 946;1 The Kerr Metric -- 1046;42; Petrov39;s Canonical Forms for the Weyl Tensor and Another Approach to the Kerr Metric -- - 1046;1 Petrov39;s Canonical Forms for the Weyl Tensor -- 1046;2 Principal Null Directions -- 1046;3 The Kerr Metric Revisited via its Petrov Matrix -- 1146;42; Matrix Representations and Classifications of Clifford Algebras -- 1146;1 Matrix Representations of Clifford Algebras -- tidtid52 Clifford algebras have become an indispensable tool for physicists at the cutting edge of theoretical investigations. Its applications in physics range from special relativity and the rotating top at one end of the spectrum, to general relativity and Dirac's equation for the electron at the other. Clifford algebras have become a virtual necessity in some areas of physics and their use is expanding in other areas; for example, in algebraic manipulations involving Dirac matrices in quantum thermodynamics, in Kaluza-Klein theories and dimensional renormalization theories, and in the formation of superstring theories. The book is aimed at beginning graduate physics and math students learning mathematical physics, relativity, quantum physics, or applied mathematics; and mathematical physicists SCIENCE / Physics / Mathematical & Computational bisacsh Clifford algebras fast Mathematical physics fast Mathematische Physik Clifford algebras Mathematical physics Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Clifford-Algebra (DE-588)4199958-7 gnd rswk-swf Clifford-Algebra (DE-588)4199958-7 s Mathematische Physik (DE-588)4037952-8 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=176378 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Snygg, John Clifford algebra a computational tool for physicists SCIENCE / Physics / Mathematical & Computational bisacsh Clifford algebras fast Mathematical physics fast Mathematische Physik Clifford algebras Mathematical physics Mathematische Physik (DE-588)4037952-8 gnd Clifford-Algebra (DE-588)4199958-7 gnd |
subject_GND | (DE-588)4037952-8 (DE-588)4199958-7 |
title | Clifford algebra a computational tool for physicists |
title_auth | Clifford algebra a computational tool for physicists |
title_exact_search | Clifford algebra a computational tool for physicists |
title_full | Clifford algebra a computational tool for physicists John Snygg |
title_fullStr | Clifford algebra a computational tool for physicists John Snygg |
title_full_unstemmed | Clifford algebra a computational tool for physicists John Snygg |
title_short | Clifford algebra |
title_sort | clifford algebra a computational tool for physicists |
title_sub | a computational tool for physicists |
topic | SCIENCE / Physics / Mathematical & Computational bisacsh Clifford algebras fast Mathematical physics fast Mathematische Physik Clifford algebras Mathematical physics Mathematische Physik (DE-588)4037952-8 gnd Clifford-Algebra (DE-588)4199958-7 gnd |
topic_facet | SCIENCE / Physics / Mathematical & Computational Clifford algebras Mathematical physics Mathematische Physik Clifford-Algebra |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=176378 |
work_keys_str_mv | AT snyggjohn cliffordalgebraacomputationaltoolforphysicists |