Classical mathematical logic: the semantic foundations of logic
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Epstein, Richard L. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Princeton Princeton University Press ©2006
Schlagworte:
Online-Zugang:FAW01
FAW02
Volltext
Beschreibung:Includes bibliographical references and indexes
Classical propositional logic -- Abstracting and axiomatizing classical propositional logic -- The language of predicate logic -- The semantics of classical predicate logic -- Substitutions and equivalences -- Equality -- Examples of formalization -- Functions -- The abstraction of models -- Axiomatizing classical predicate logic -- The number of objects in the universe of a model -- Formalizing group theory -- Linear orderings -- Second-order classical predicate logic -- The natural numbers -- The integers and rationals -- The real numbers -- One-dimensional geometry -- Two-dimensional Euclidean geometry -- Translations within classical predicate logic -- Classical predicate logic with non-referring names -- The Liar paradox -- On mathematical logic and mathematics -- Appendix: The completeness of classical predicate logic proved by Gödel's Method
In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not only of arithmetic, but also of group theory, field theory, and linear orderings. These lead to the formalization of the real numbers and Euclidean plane geometry. The scope and limitations of modern logic are made clear in these formalizations. The book provides detailed explanations of all proo
Beschreibung:1 Online-Ressource (xxii, 522 pages)
ISBN:0691123004
1400841550
9780691123004
9781400841554

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen