Low-dimensional nanoscale systems on discrete spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
c2007
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 241-257) and index Lattice structures and discretizations -- Periodic quasiperiodic and confinement potentials -- Time discretization schemes -- Discrete Schr·odinger equations. Typical examples -- Discrete analogs and lie-algebraic discretizations. Realizations of Heisenberg-Weyl algebras -- Hopping Hamiltonians. Electrons in electric field -- Tight binding descriptions in the presence of the magnetic field -- The Harper-Equation and electrons on the 1D ring -- The q-symmetrized Harper equation -- Quantum oscillations and interference effects in nanodevices -- Conclusions The area of low-dimensional quantum systems on discrete spaces is a rapidly growing research field lying at the interface between quantum theoretical developments, like discrete and q-difference equations, and tight binding superlattice models in solid-state physics. Systems on discrete spaces are promising candidates for applications in several areas. Indeed, the dynamic localization of electrons on the 1D lattice under the influence of an external electric field serves to describe time-dependent transport in quantum wires, linear optical absorption spectra, and the generation of higher harmo |
Beschreibung: | 1 Online-Ressource (xiii, 262 p.) |
ISBN: | 9789812706386 9789812770615 9812706380 9812770615 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043099438 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2007 |||| o||u| ||||||eng d | ||
020 | |a 9789812706386 |9 978-981-270-638-6 | ||
020 | |a 9789812770615 |c electronic bk. |9 978-981-277-061-5 | ||
020 | |a 9812706380 |9 981-270-638-0 | ||
020 | |a 9812770615 |c electronic bk. |9 981-277-061-5 | ||
035 | |a (OCoLC)648316852 | ||
035 | |a (DE-599)BVBBV043099438 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.12 |2 22 | |
100 | 1 | |a Papp, E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Low-dimensional nanoscale systems on discrete spaces |c Erhardt Papp, Codrutza Micu |
264 | 1 | |a Singapore |b World Scientific |c c2007 | |
300 | |a 1 Online-Ressource (xiii, 262 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 241-257) and index | ||
500 | |a Lattice structures and discretizations -- Periodic quasiperiodic and confinement potentials -- Time discretization schemes -- Discrete Schr·odinger equations. Typical examples -- Discrete analogs and lie-algebraic discretizations. Realizations of Heisenberg-Weyl algebras -- Hopping Hamiltonians. Electrons in electric field -- Tight binding descriptions in the presence of the magnetic field -- The Harper-Equation and electrons on the 1D ring -- The q-symmetrized Harper equation -- Quantum oscillations and interference effects in nanodevices -- Conclusions | ||
500 | |a The area of low-dimensional quantum systems on discrete spaces is a rapidly growing research field lying at the interface between quantum theoretical developments, like discrete and q-difference equations, and tight binding superlattice models in solid-state physics. Systems on discrete spaces are promising candidates for applications in several areas. Indeed, the dynamic localization of electrons on the 1D lattice under the influence of an external electric field serves to describe time-dependent transport in quantum wires, linear optical absorption spectra, and the generation of higher harmo | ||
650 | 7 | |a SCIENCE / Physics / Quantum Theory |2 bisacsh | |
650 | 7 | |a Nanoelectromechanical systems |2 fast | |
650 | 7 | |a Quantum theory |2 fast | |
650 | 7 | |a Schrödinger equation |2 fast | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Schrödinger equation | |
650 | 4 | |a Nanoelectromechanical systems | |
650 | 0 | 7 | |a Niederdimensionales System |0 (DE-588)4202325-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diskretes System |0 (DE-588)4401225-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |D s |
689 | 0 | 1 | |a Diskretes System |0 (DE-588)4401225-1 |D s |
689 | 0 | 2 | |a Niederdimensionales System |0 (DE-588)4202325-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Micu, Codrutza |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=203916 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028523629 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=203916 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=203916 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175507907936256 |
---|---|
any_adam_object | |
author | Papp, E. |
author_facet | Papp, E. |
author_role | aut |
author_sort | Papp, E. |
author_variant | e p ep |
building | Verbundindex |
bvnumber | BV043099438 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)648316852 (DE-599)BVBBV043099438 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03609nmm a2200589zc 4500</leader><controlfield tag="001">BV043099438</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812706386</subfield><subfield code="9">978-981-270-638-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812770615</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-277-061-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812706380</subfield><subfield code="9">981-270-638-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812770615</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-277-061-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)648316852</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043099438</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Papp, E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low-dimensional nanoscale systems on discrete spaces</subfield><subfield code="c">Erhardt Papp, Codrutza Micu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 262 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 241-257) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Lattice structures and discretizations -- Periodic quasiperiodic and confinement potentials -- Time discretization schemes -- Discrete Schr·odinger equations. Typical examples -- Discrete analogs and lie-algebraic discretizations. Realizations of Heisenberg-Weyl algebras -- Hopping Hamiltonians. Electrons in electric field -- Tight binding descriptions in the presence of the magnetic field -- The Harper-Equation and electrons on the 1D ring -- The q-symmetrized Harper equation -- Quantum oscillations and interference effects in nanodevices -- Conclusions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The area of low-dimensional quantum systems on discrete spaces is a rapidly growing research field lying at the interface between quantum theoretical developments, like discrete and q-difference equations, and tight binding superlattice models in solid-state physics. Systems on discrete spaces are promising candidates for applications in several areas. Indeed, the dynamic localization of electrons on the 1D lattice under the influence of an external electric field serves to describe time-dependent transport in quantum wires, linear optical absorption spectra, and the generation of higher harmo</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / Quantum Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanoelectromechanical systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schrödinger equation</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schrödinger equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoelectromechanical systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Niederdimensionales System</subfield><subfield code="0">(DE-588)4202325-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskretes System</subfield><subfield code="0">(DE-588)4401225-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Diskretes System</subfield><subfield code="0">(DE-588)4401225-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Niederdimensionales System</subfield><subfield code="0">(DE-588)4202325-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Micu, Codrutza</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=203916</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028523629</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=203916</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=203916</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043099438 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:24Z |
institution | BVB |
isbn | 9789812706386 9789812770615 9812706380 9812770615 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028523629 |
oclc_num | 648316852 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiii, 262 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | World Scientific |
record_format | marc |
spelling | Papp, E. Verfasser aut Low-dimensional nanoscale systems on discrete spaces Erhardt Papp, Codrutza Micu Singapore World Scientific c2007 1 Online-Ressource (xiii, 262 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (p. 241-257) and index Lattice structures and discretizations -- Periodic quasiperiodic and confinement potentials -- Time discretization schemes -- Discrete Schr·odinger equations. Typical examples -- Discrete analogs and lie-algebraic discretizations. Realizations of Heisenberg-Weyl algebras -- Hopping Hamiltonians. Electrons in electric field -- Tight binding descriptions in the presence of the magnetic field -- The Harper-Equation and electrons on the 1D ring -- The q-symmetrized Harper equation -- Quantum oscillations and interference effects in nanodevices -- Conclusions The area of low-dimensional quantum systems on discrete spaces is a rapidly growing research field lying at the interface between quantum theoretical developments, like discrete and q-difference equations, and tight binding superlattice models in solid-state physics. Systems on discrete spaces are promising candidates for applications in several areas. Indeed, the dynamic localization of electrons on the 1D lattice under the influence of an external electric field serves to describe time-dependent transport in quantum wires, linear optical absorption spectra, and the generation of higher harmo SCIENCE / Physics / Quantum Theory bisacsh Nanoelectromechanical systems fast Quantum theory fast Schrödinger equation fast Quantentheorie Quantum theory Schrödinger equation Nanoelectromechanical systems Niederdimensionales System (DE-588)4202325-7 gnd rswk-swf Quantenmechanisches System (DE-588)4300046-0 gnd rswk-swf Diskretes System (DE-588)4401225-1 gnd rswk-swf Quantenmechanisches System (DE-588)4300046-0 s Diskretes System (DE-588)4401225-1 s Niederdimensionales System (DE-588)4202325-7 s 1\p DE-604 Micu, Codrutza Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=203916 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Papp, E. Low-dimensional nanoscale systems on discrete spaces SCIENCE / Physics / Quantum Theory bisacsh Nanoelectromechanical systems fast Quantum theory fast Schrödinger equation fast Quantentheorie Quantum theory Schrödinger equation Nanoelectromechanical systems Niederdimensionales System (DE-588)4202325-7 gnd Quantenmechanisches System (DE-588)4300046-0 gnd Diskretes System (DE-588)4401225-1 gnd |
subject_GND | (DE-588)4202325-7 (DE-588)4300046-0 (DE-588)4401225-1 |
title | Low-dimensional nanoscale systems on discrete spaces |
title_auth | Low-dimensional nanoscale systems on discrete spaces |
title_exact_search | Low-dimensional nanoscale systems on discrete spaces |
title_full | Low-dimensional nanoscale systems on discrete spaces Erhardt Papp, Codrutza Micu |
title_fullStr | Low-dimensional nanoscale systems on discrete spaces Erhardt Papp, Codrutza Micu |
title_full_unstemmed | Low-dimensional nanoscale systems on discrete spaces Erhardt Papp, Codrutza Micu |
title_short | Low-dimensional nanoscale systems on discrete spaces |
title_sort | low dimensional nanoscale systems on discrete spaces |
topic | SCIENCE / Physics / Quantum Theory bisacsh Nanoelectromechanical systems fast Quantum theory fast Schrödinger equation fast Quantentheorie Quantum theory Schrödinger equation Nanoelectromechanical systems Niederdimensionales System (DE-588)4202325-7 gnd Quantenmechanisches System (DE-588)4300046-0 gnd Diskretes System (DE-588)4401225-1 gnd |
topic_facet | SCIENCE / Physics / Quantum Theory Nanoelectromechanical systems Quantum theory Schrödinger equation Quantentheorie Niederdimensionales System Quantenmechanisches System Diskretes System |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=203916 |
work_keys_str_mv | AT pappe lowdimensionalnanoscalesystemsondiscretespaces AT micucodrutza lowdimensionalnanoscalesystemsondiscretespaces |