Pattern classification using ensemble methods:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2010
|
Schriftenreihe: | Series in machine perception and artificial intelligence
v. 75 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 185-222) and index 1. Introduction to pattern classification. 1.1. Pattern classification. 1.2. Induction algorithms. 1.3. Rule induction. 1.4. Decision trees. 1.5. Bayesian methods. 1.6. Other induction methods -- 2. Introduction to ensemble learning. 2.1. Back to the roots. 2.2. The wisdom of crowds. 2.3. The bagging algorithm. 2.4. The boosting algorithm. 2.5. The AdaBoost algorithm. 2.6. No free lunch theorem and ensemble learning. 2.7. Bias-variance decomposition and ensemble learning. 2.8. Occam's razor and ensemble learning. 2.9. Classifier dependency. 2.10. Ensemble methods for advanced classification tasks -- 3. Ensemble classification. 3.1. Fusions methods. 3.2. Selecting classification. 3.3. Mixture of experts and meta learning -- 4. Ensemble diversity. 4.1. Overview. 4.2. Manipulating the inducer. 4.3. Manipulating the training samples. 4.4. Manipulating the target attribute representation. 4.5. Partitioning the search space. 4.6. Multi-inducers. 4.7. Measuring the diversity -- 5. Ensemble selection. 5.1. Ensemble selection. 5.2. Pre selection of the ensemble size. 5.3. Selection of the ensemble size while training. 5.4. Pruning -- post selection of the ensemble size -- 6. Error correcting output codes. 6.1. Code-matrix decomposition of multiclass problems. 6.2. Type I -- training an ensemble given a code-matrix. 6.3. Type II -- adapting code-matrices to the multiclass problems -- 7. Evaluating ensembles of classifiers. 7.1. Generalization error. 7.2. Computational complexity. 7.3. Interpretability of the resulting ensemble. 7.4. Scalability to large datasets. 7.5. Robustness. 7.6. Stability. 7.7. Flexibility. 7.8. Usability. 7.9. Software availability. 7.10. Which ensemble method should be used? Researchers from various disciplines such as pattern recognition, statistics, and machine learning have explored the use of ensemble methodology since the late seventies. Thus, they are faced with a wide variety of methods, given the growing interest in the field. This book aims to impose a degree of order upon this diversity by presenting a coherent and unified repository of ensemble methods, theories, trends, challenges and applications. The book describes in detail the classical methods, as well as the extensions and novel approaches developed recently. Along with algorithmic descriptions of each method, it also explains the circumstances in which this method is applicable and the consequences and the trade-offs incurred by using the method |
Beschreibung: | 1 Online-Ressource (xv, 225 p.) |
ISBN: | 9789814271066 9789814271073 9814271063 9814271071 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043098870 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2010 |||| o||u| ||||||eng d | ||
020 | |a 9789814271066 |9 978-981-4271-06-6 | ||
020 | |a 9789814271073 |c electronic bk. |9 978-981-4271-07-3 | ||
020 | |a 9814271063 |9 981-4271-06-3 | ||
020 | |a 9814271071 |c electronic bk. |9 981-4271-07-1 | ||
035 | |a (OCoLC)630133693 | ||
035 | |a (DE-599)BVBBV043098870 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 006.4 |2 22 | |
100 | 1 | |a Rokach, Lior |e Verfasser |4 aut | |
245 | 1 | 0 | |a Pattern classification using ensemble methods |c Lior Rokach |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2010 | |
300 | |a 1 Online-Ressource (xv, 225 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series in machine perception and artificial intelligence |v v. 75 | |
500 | |a Includes bibliographical references (p. 185-222) and index | ||
500 | |a 1. Introduction to pattern classification. 1.1. Pattern classification. 1.2. Induction algorithms. 1.3. Rule induction. 1.4. Decision trees. 1.5. Bayesian methods. 1.6. Other induction methods -- 2. Introduction to ensemble learning. 2.1. Back to the roots. 2.2. The wisdom of crowds. 2.3. The bagging algorithm. 2.4. The boosting algorithm. 2.5. The AdaBoost algorithm. 2.6. No free lunch theorem and ensemble learning. 2.7. Bias-variance decomposition and ensemble learning. 2.8. Occam's razor and ensemble learning. 2.9. Classifier dependency. 2.10. Ensemble methods for advanced classification tasks -- 3. Ensemble classification. 3.1. Fusions methods. 3.2. Selecting classification. 3.3. Mixture of experts and meta learning -- 4. Ensemble diversity. 4.1. Overview. 4.2. Manipulating the inducer. 4.3. Manipulating the training samples. 4.4. Manipulating the target attribute representation. 4.5. Partitioning the search space. 4.6. Multi-inducers. 4.7. Measuring the diversity -- 5. Ensemble selection. 5.1. Ensemble selection. 5.2. Pre selection of the ensemble size. 5.3. Selection of the ensemble size while training. 5.4. Pruning -- post selection of the ensemble size -- 6. Error correcting output codes. 6.1. Code-matrix decomposition of multiclass problems. 6.2. Type I -- training an ensemble given a code-matrix. 6.3. Type II -- adapting code-matrices to the multiclass problems -- 7. Evaluating ensembles of classifiers. 7.1. Generalization error. 7.2. Computational complexity. 7.3. Interpretability of the resulting ensemble. 7.4. Scalability to large datasets. 7.5. Robustness. 7.6. Stability. 7.7. Flexibility. 7.8. Usability. 7.9. Software availability. 7.10. Which ensemble method should be used? | ||
500 | |a Researchers from various disciplines such as pattern recognition, statistics, and machine learning have explored the use of ensemble methodology since the late seventies. Thus, they are faced with a wide variety of methods, given the growing interest in the field. This book aims to impose a degree of order upon this diversity by presenting a coherent and unified repository of ensemble methods, theories, trends, challenges and applications. The book describes in detail the classical methods, as well as the extensions and novel approaches developed recently. Along with algorithmic descriptions of each method, it also explains the circumstances in which this method is applicable and the consequences and the trade-offs incurred by using the method | ||
650 | 4 | |a Reconnaissance des formes (Informatique) / Classification | |
650 | 4 | |a Théorie des ensembles | |
650 | 7 | |a COMPUTERS / Optical Data Processing |2 bisacsh | |
650 | 7 | |a Mustererkennung |2 swd | |
650 | 4 | |a Pattern recognition systems | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Machine learning | |
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
710 | 2 | |a World Scientific (Firm) |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340641 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028523061 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340641 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340641 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175506734579712 |
---|---|
any_adam_object | |
author | Rokach, Lior |
author_facet | Rokach, Lior |
author_role | aut |
author_sort | Rokach, Lior |
author_variant | l r lr |
building | Verbundindex |
bvnumber | BV043098870 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)630133693 (DE-599)BVBBV043098870 |
dewey-full | 006.4 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.4 |
dewey-search | 006.4 |
dewey-sort | 16.4 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04685nmm a2200541zcb4500</leader><controlfield tag="001">BV043098870</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814271066</subfield><subfield code="9">978-981-4271-06-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814271073</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4271-07-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814271063</subfield><subfield code="9">981-4271-06-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814271071</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4271-07-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)630133693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043098870</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.4</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rokach, Lior</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pattern classification using ensemble methods</subfield><subfield code="c">Lior Rokach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 225 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in machine perception and artificial intelligence</subfield><subfield code="v">v. 75</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 185-222) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction to pattern classification. 1.1. Pattern classification. 1.2. Induction algorithms. 1.3. Rule induction. 1.4. Decision trees. 1.5. Bayesian methods. 1.6. Other induction methods -- 2. Introduction to ensemble learning. 2.1. Back to the roots. 2.2. The wisdom of crowds. 2.3. The bagging algorithm. 2.4. The boosting algorithm. 2.5. The AdaBoost algorithm. 2.6. No free lunch theorem and ensemble learning. 2.7. Bias-variance decomposition and ensemble learning. 2.8. Occam's razor and ensemble learning. 2.9. Classifier dependency. 2.10. Ensemble methods for advanced classification tasks -- 3. Ensemble classification. 3.1. Fusions methods. 3.2. Selecting classification. 3.3. Mixture of experts and meta learning -- 4. Ensemble diversity. 4.1. Overview. 4.2. Manipulating the inducer. 4.3. Manipulating the training samples. 4.4. Manipulating the target attribute representation. 4.5. Partitioning the search space. 4.6. Multi-inducers. 4.7. Measuring the diversity -- 5. Ensemble selection. 5.1. Ensemble selection. 5.2. Pre selection of the ensemble size. 5.3. Selection of the ensemble size while training. 5.4. Pruning -- post selection of the ensemble size -- 6. Error correcting output codes. 6.1. Code-matrix decomposition of multiclass problems. 6.2. Type I -- training an ensemble given a code-matrix. 6.3. Type II -- adapting code-matrices to the multiclass problems -- 7. Evaluating ensembles of classifiers. 7.1. Generalization error. 7.2. Computational complexity. 7.3. Interpretability of the resulting ensemble. 7.4. Scalability to large datasets. 7.5. Robustness. 7.6. Stability. 7.7. Flexibility. 7.8. Usability. 7.9. Software availability. 7.10. Which ensemble method should be used?</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Researchers from various disciplines such as pattern recognition, statistics, and machine learning have explored the use of ensemble methodology since the late seventies. Thus, they are faced with a wide variety of methods, given the growing interest in the field. This book aims to impose a degree of order upon this diversity by presenting a coherent and unified repository of ensemble methods, theories, trends, challenges and applications. The book describes in detail the classical methods, as well as the extensions and novel approaches developed recently. Along with algorithmic descriptions of each method, it also explains the circumstances in which this method is applicable and the consequences and the trade-offs incurred by using the method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reconnaissance des formes (Informatique) / Classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorie des ensembles</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Optical Data Processing</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern recognition systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340641</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028523061</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340641</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340641</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043098870 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:23Z |
institution | BVB |
isbn | 9789814271066 9789814271073 9814271063 9814271071 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028523061 |
oclc_num | 630133693 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xv, 225 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Series in machine perception and artificial intelligence |
spelling | Rokach, Lior Verfasser aut Pattern classification using ensemble methods Lior Rokach Singapore World Scientific Pub. Co. c2010 1 Online-Ressource (xv, 225 p.) txt rdacontent c rdamedia cr rdacarrier Series in machine perception and artificial intelligence v. 75 Includes bibliographical references (p. 185-222) and index 1. Introduction to pattern classification. 1.1. Pattern classification. 1.2. Induction algorithms. 1.3. Rule induction. 1.4. Decision trees. 1.5. Bayesian methods. 1.6. Other induction methods -- 2. Introduction to ensemble learning. 2.1. Back to the roots. 2.2. The wisdom of crowds. 2.3. The bagging algorithm. 2.4. The boosting algorithm. 2.5. The AdaBoost algorithm. 2.6. No free lunch theorem and ensemble learning. 2.7. Bias-variance decomposition and ensemble learning. 2.8. Occam's razor and ensemble learning. 2.9. Classifier dependency. 2.10. Ensemble methods for advanced classification tasks -- 3. Ensemble classification. 3.1. Fusions methods. 3.2. Selecting classification. 3.3. Mixture of experts and meta learning -- 4. Ensemble diversity. 4.1. Overview. 4.2. Manipulating the inducer. 4.3. Manipulating the training samples. 4.4. Manipulating the target attribute representation. 4.5. Partitioning the search space. 4.6. Multi-inducers. 4.7. Measuring the diversity -- 5. Ensemble selection. 5.1. Ensemble selection. 5.2. Pre selection of the ensemble size. 5.3. Selection of the ensemble size while training. 5.4. Pruning -- post selection of the ensemble size -- 6. Error correcting output codes. 6.1. Code-matrix decomposition of multiclass problems. 6.2. Type I -- training an ensemble given a code-matrix. 6.3. Type II -- adapting code-matrices to the multiclass problems -- 7. Evaluating ensembles of classifiers. 7.1. Generalization error. 7.2. Computational complexity. 7.3. Interpretability of the resulting ensemble. 7.4. Scalability to large datasets. 7.5. Robustness. 7.6. Stability. 7.7. Flexibility. 7.8. Usability. 7.9. Software availability. 7.10. Which ensemble method should be used? Researchers from various disciplines such as pattern recognition, statistics, and machine learning have explored the use of ensemble methodology since the late seventies. Thus, they are faced with a wide variety of methods, given the growing interest in the field. This book aims to impose a degree of order upon this diversity by presenting a coherent and unified repository of ensemble methods, theories, trends, challenges and applications. The book describes in detail the classical methods, as well as the extensions and novel approaches developed recently. Along with algorithmic descriptions of each method, it also explains the circumstances in which this method is applicable and the consequences and the trade-offs incurred by using the method Reconnaissance des formes (Informatique) / Classification Théorie des ensembles COMPUTERS / Optical Data Processing bisacsh Mustererkennung swd Pattern recognition systems Algorithms Machine learning Mustererkennung (DE-588)4040936-3 gnd rswk-swf Mustererkennung (DE-588)4040936-3 s 1\p DE-604 World Scientific (Firm) Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340641 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rokach, Lior Pattern classification using ensemble methods Reconnaissance des formes (Informatique) / Classification Théorie des ensembles COMPUTERS / Optical Data Processing bisacsh Mustererkennung swd Pattern recognition systems Algorithms Machine learning Mustererkennung (DE-588)4040936-3 gnd |
subject_GND | (DE-588)4040936-3 |
title | Pattern classification using ensemble methods |
title_auth | Pattern classification using ensemble methods |
title_exact_search | Pattern classification using ensemble methods |
title_full | Pattern classification using ensemble methods Lior Rokach |
title_fullStr | Pattern classification using ensemble methods Lior Rokach |
title_full_unstemmed | Pattern classification using ensemble methods Lior Rokach |
title_short | Pattern classification using ensemble methods |
title_sort | pattern classification using ensemble methods |
topic | Reconnaissance des formes (Informatique) / Classification Théorie des ensembles COMPUTERS / Optical Data Processing bisacsh Mustererkennung swd Pattern recognition systems Algorithms Machine learning Mustererkennung (DE-588)4040936-3 gnd |
topic_facet | Reconnaissance des formes (Informatique) / Classification Théorie des ensembles COMPUTERS / Optical Data Processing Mustererkennung Pattern recognition systems Algorithms Machine learning |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340641 |
work_keys_str_mv | AT rokachlior patternclassificationusingensemblemethods AT worldscientificfirm patternclassificationusingensemblemethods |