The decomposition of global conformal invariants:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton
Princeton University Press
2012
|
Schriftenreihe: | Annals of mathematics studies
no. 182 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Cover Page; Title Page; Copyright Page; Table of Contents; Acknowledgments; 1. Introduction; 1.1 Related Questions; 1.2 Outline of this Work; 2. An Iterative Decomposition of Global Conformal Invariants: The First Step; 2.1 Introduction; 2.2 Conventions, Background, and the Super Divergence Formula; 2.3 From the super Divergence Formula for Ig(ø) Back to P(g): The Two Main Claims of this Work; 2.4 Proposition 2.7 in the Easy Case s = s; 2.5 Proposition 2.7 in the Hard Case s <s; 3. The Second Step: The Fefferman-Graham Ambient Metric and the Nature of the Decomposition; 3.1 Introduction 3.2 The Locally Conformally Invariant Piece in P(g): A Proof of Lemmas 3.1, 3.2, and 3.33.3 Proof of Lemma 3.4: The Divergence Piece in P(g); 4. A Result on the Structure of Local Riemannian Invariants: The Fundamental Proposition; 4.1 Introduction; 4.2 The fundamental Proposition 4.13; 4.3 Proof of Proposition 4.13: Set up an Induction and Reduce the Inductive Step to Lemmas 4.16, 4.19, 4.24; 4.4 Proof that Proposition 4.13 Follows from Lemmas 4.16, 4.19, and 4.24 (and Lemmas 4.22 and 4.23); 5. The Inductive Step of the Fundamental Proposition: The Simpler Cases; 5.1 Introduction 5.2 Notation and Preliminary Results5.3 An analysis of Curvtrans[Lg]; 5.4 A study of LC[Lg] and W[Lg] in (5.16): Computations and cancellations; 6. The Inductive Step of the Fundamental Proposition: The Hard Cases, Part I; 6.1 Introduction; 6.2 The First Ingredient in the Grand Conclusion; 6.3 The Second Part of the Grand Conclusion: A study of Image 1,ß Øu+1 [Lg]=0; 6.4 The Grand Conclusion and the Proof of Lemma 4.24; 7. The Inductive Step of the Fundamental Proposition: The Hard Cases, Part II; 7.1 Introduction: A sketch of the Strategy; 7.2 The proof of Lemma 4.24 in Case B; A. Appendix A.1 Some Technical ToolsA. 2 Some Postponed Short Proofs; A.3 Proof of Lemmas 4.22 and 4.23; Bibliography; Index of Authors and Terms; Index of Symbols This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Deser Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (460 pages) |
ISBN: | 0691153477 0691153485 1400842727 9780691153476 9780691153483 9781400842728 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043097895 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2012 |||| o||u| ||||||eng d | ||
020 | |a 0691153477 |9 0-691-15347-7 | ||
020 | |a 0691153485 |9 0-691-15348-5 | ||
020 | |a 1400842727 |c electronic bk. |9 1-4008-4272-7 | ||
020 | |a 9780691153476 |9 978-0-691-15347-6 | ||
020 | |a 9780691153483 |9 978-0-691-15348-3 | ||
020 | |a 9781400842728 |c electronic bk. |9 978-1-4008-4272-8 | ||
035 | |a (OCoLC)780425982 | ||
035 | |a (DE-599)BVBBV043097895 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 518 |2 22 | |
100 | 1 | |a Alexakis, Spyros |e Verfasser |4 aut | |
245 | 1 | 0 | |a The decomposition of global conformal invariants |c Spyros Alexakis |
264 | 1 | |a Princeton |b Princeton University Press |c 2012 | |
300 | |a 1 Online-Ressource (460 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Annals of mathematics studies |v no. 182 | |
500 | |a Cover Page; Title Page; Copyright Page; Table of Contents; Acknowledgments; 1. Introduction; 1.1 Related Questions; 1.2 Outline of this Work; 2. An Iterative Decomposition of Global Conformal Invariants: The First Step; 2.1 Introduction; 2.2 Conventions, Background, and the Super Divergence Formula; 2.3 From the super Divergence Formula for Ig(ø) Back to P(g): The Two Main Claims of this Work; 2.4 Proposition 2.7 in the Easy Case s = s; 2.5 Proposition 2.7 in the Hard Case s <s; 3. The Second Step: The Fefferman-Graham Ambient Metric and the Nature of the Decomposition; 3.1 Introduction | ||
500 | |a 3.2 The Locally Conformally Invariant Piece in P(g): A Proof of Lemmas 3.1, 3.2, and 3.33.3 Proof of Lemma 3.4: The Divergence Piece in P(g); 4. A Result on the Structure of Local Riemannian Invariants: The Fundamental Proposition; 4.1 Introduction; 4.2 The fundamental Proposition 4.13; 4.3 Proof of Proposition 4.13: Set up an Induction and Reduce the Inductive Step to Lemmas 4.16, 4.19, 4.24; 4.4 Proof that Proposition 4.13 Follows from Lemmas 4.16, 4.19, and 4.24 (and Lemmas 4.22 and 4.23); 5. The Inductive Step of the Fundamental Proposition: The Simpler Cases; 5.1 Introduction | ||
500 | |a 5.2 Notation and Preliminary Results5.3 An analysis of Curvtrans[Lg]; 5.4 A study of LC[Lg] and W[Lg] in (5.16): Computations and cancellations; 6. The Inductive Step of the Fundamental Proposition: The Hard Cases, Part I; 6.1 Introduction; 6.2 The First Ingredient in the Grand Conclusion; 6.3 The Second Part of the Grand Conclusion: A study of Image 1,ß Øu+1 [Lg]=0; 6.4 The Grand Conclusion and the Proof of Lemma 4.24; 7. The Inductive Step of the Fundamental Proposition: The Hard Cases, Part II; 7.1 Introduction: A sketch of the Strategy; 7.2 The proof of Lemma 4.24 in Case B; A. Appendix | ||
500 | |a A.1 Some Technical ToolsA. 2 Some Postponed Short Proofs; A.3 Proof of Lemmas 4.22 and 4.23; Bibliography; Index of Authors and Terms; Index of Symbols | ||
500 | |a This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Deser | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Mathematics | |
650 | 7 | |a MATHEMATICS / Numerical Analysis |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Geometry / Differential |2 bisacsh | |
650 | 7 | |a Conformal invariants |2 fast | |
650 | 7 | |a Decomposition (Mathematics) |2 fast | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Conformal invariants | |
650 | 4 | |a Decomposition (Mathematics) | |
650 | 0 | 7 | |a Globale Riemannsche Geometrie |0 (DE-588)4157622-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Globale Riemannsche Geometrie |0 (DE-588)4157622-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=439689 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028522086 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=439689 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=439689 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175504890134528 |
---|---|
any_adam_object | |
author | Alexakis, Spyros |
author_facet | Alexakis, Spyros |
author_role | aut |
author_sort | Alexakis, Spyros |
author_variant | s a sa |
building | Verbundindex |
bvnumber | BV043097895 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)780425982 (DE-599)BVBBV043097895 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04869nmm a2200601zcb4500</leader><controlfield tag="001">BV043097895</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691153477</subfield><subfield code="9">0-691-15347-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691153485</subfield><subfield code="9">0-691-15348-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400842727</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-4272-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691153476</subfield><subfield code="9">978-0-691-15347-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691153483</subfield><subfield code="9">978-0-691-15348-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400842728</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-4272-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)780425982</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043097895</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alexakis, Spyros</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The decomposition of global conformal invariants</subfield><subfield code="c">Spyros Alexakis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (460 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">no. 182</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover Page; Title Page; Copyright Page; Table of Contents; Acknowledgments; 1. Introduction; 1.1 Related Questions; 1.2 Outline of this Work; 2. An Iterative Decomposition of Global Conformal Invariants: The First Step; 2.1 Introduction; 2.2 Conventions, Background, and the Super Divergence Formula; 2.3 From the super Divergence Formula for Ig(ø) Back to P(g): The Two Main Claims of this Work; 2.4 Proposition 2.7 in the Easy Case s = s; 2.5 Proposition 2.7 in the Hard Case s <s; 3. The Second Step: The Fefferman-Graham Ambient Metric and the Nature of the Decomposition; 3.1 Introduction</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.2 The Locally Conformally Invariant Piece in P(g): A Proof of Lemmas 3.1, 3.2, and 3.33.3 Proof of Lemma 3.4: The Divergence Piece in P(g); 4. A Result on the Structure of Local Riemannian Invariants: The Fundamental Proposition; 4.1 Introduction; 4.2 The fundamental Proposition 4.13; 4.3 Proof of Proposition 4.13: Set up an Induction and Reduce the Inductive Step to Lemmas 4.16, 4.19, 4.24; 4.4 Proof that Proposition 4.13 Follows from Lemmas 4.16, 4.19, and 4.24 (and Lemmas 4.22 and 4.23); 5. The Inductive Step of the Fundamental Proposition: The Simpler Cases; 5.1 Introduction</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5.2 Notation and Preliminary Results5.3 An analysis of Curvtrans[Lg]; 5.4 A study of LC[Lg] and W[Lg] in (5.16): Computations and cancellations; 6. The Inductive Step of the Fundamental Proposition: The Hard Cases, Part I; 6.1 Introduction; 6.2 The First Ingredient in the Grand Conclusion; 6.3 The Second Part of the Grand Conclusion: A study of Image 1,ß Øu+1 [Lg]=0; 6.4 The Grand Conclusion and the Proof of Lemma 4.24; 7. The Inductive Step of the Fundamental Proposition: The Hard Cases, Part II; 7.1 Introduction: A sketch of the Strategy; 7.2 The proof of Lemma 4.24 in Case B; A. Appendix</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A.1 Some Technical ToolsA. 2 Some Postponed Short Proofs; A.3 Proof of Lemmas 4.22 and 4.23; Bibliography; Index of Authors and Terms; Index of Symbols</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Deser</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Numerical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Differential</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Conformal invariants</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Decomposition (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conformal invariants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decomposition (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4157622-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Globale Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4157622-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=439689</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028522086</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=439689</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=439689</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043097895 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:21Z |
institution | BVB |
isbn | 0691153477 0691153485 1400842727 9780691153476 9780691153483 9781400842728 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028522086 |
oclc_num | 780425982 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (460 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Princeton University Press |
record_format | marc |
series2 | Annals of mathematics studies |
spelling | Alexakis, Spyros Verfasser aut The decomposition of global conformal invariants Spyros Alexakis Princeton Princeton University Press 2012 1 Online-Ressource (460 pages) txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies no. 182 Cover Page; Title Page; Copyright Page; Table of Contents; Acknowledgments; 1. Introduction; 1.1 Related Questions; 1.2 Outline of this Work; 2. An Iterative Decomposition of Global Conformal Invariants: The First Step; 2.1 Introduction; 2.2 Conventions, Background, and the Super Divergence Formula; 2.3 From the super Divergence Formula for Ig(ø) Back to P(g): The Two Main Claims of this Work; 2.4 Proposition 2.7 in the Easy Case s = s; 2.5 Proposition 2.7 in the Hard Case s <s; 3. The Second Step: The Fefferman-Graham Ambient Metric and the Nature of the Decomposition; 3.1 Introduction 3.2 The Locally Conformally Invariant Piece in P(g): A Proof of Lemmas 3.1, 3.2, and 3.33.3 Proof of Lemma 3.4: The Divergence Piece in P(g); 4. A Result on the Structure of Local Riemannian Invariants: The Fundamental Proposition; 4.1 Introduction; 4.2 The fundamental Proposition 4.13; 4.3 Proof of Proposition 4.13: Set up an Induction and Reduce the Inductive Step to Lemmas 4.16, 4.19, 4.24; 4.4 Proof that Proposition 4.13 Follows from Lemmas 4.16, 4.19, and 4.24 (and Lemmas 4.22 and 4.23); 5. The Inductive Step of the Fundamental Proposition: The Simpler Cases; 5.1 Introduction 5.2 Notation and Preliminary Results5.3 An analysis of Curvtrans[Lg]; 5.4 A study of LC[Lg] and W[Lg] in (5.16): Computations and cancellations; 6. The Inductive Step of the Fundamental Proposition: The Hard Cases, Part I; 6.1 Introduction; 6.2 The First Ingredient in the Grand Conclusion; 6.3 The Second Part of the Grand Conclusion: A study of Image 1,ß Øu+1 [Lg]=0; 6.4 The Grand Conclusion and the Proof of Lemma 4.24; 7. The Inductive Step of the Fundamental Proposition: The Hard Cases, Part II; 7.1 Introduction: A sketch of the Strategy; 7.2 The proof of Lemma 4.24 in Case B; A. Appendix A.1 Some Technical ToolsA. 2 Some Postponed Short Proofs; A.3 Proof of Lemmas 4.22 and 4.23; Bibliography; Index of Authors and Terms; Index of Symbols This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Deser Includes bibliographical references and index Mathematics MATHEMATICS / Numerical Analysis bisacsh MATHEMATICS / Geometry / Differential bisacsh Conformal invariants fast Decomposition (Mathematics) fast Mathematik Conformal invariants Decomposition (Mathematics) Globale Riemannsche Geometrie (DE-588)4157622-6 gnd rswk-swf Globale Riemannsche Geometrie (DE-588)4157622-6 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=439689 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Alexakis, Spyros The decomposition of global conformal invariants Mathematics MATHEMATICS / Numerical Analysis bisacsh MATHEMATICS / Geometry / Differential bisacsh Conformal invariants fast Decomposition (Mathematics) fast Mathematik Conformal invariants Decomposition (Mathematics) Globale Riemannsche Geometrie (DE-588)4157622-6 gnd |
subject_GND | (DE-588)4157622-6 |
title | The decomposition of global conformal invariants |
title_auth | The decomposition of global conformal invariants |
title_exact_search | The decomposition of global conformal invariants |
title_full | The decomposition of global conformal invariants Spyros Alexakis |
title_fullStr | The decomposition of global conformal invariants Spyros Alexakis |
title_full_unstemmed | The decomposition of global conformal invariants Spyros Alexakis |
title_short | The decomposition of global conformal invariants |
title_sort | the decomposition of global conformal invariants |
topic | Mathematics MATHEMATICS / Numerical Analysis bisacsh MATHEMATICS / Geometry / Differential bisacsh Conformal invariants fast Decomposition (Mathematics) fast Mathematik Conformal invariants Decomposition (Mathematics) Globale Riemannsche Geometrie (DE-588)4157622-6 gnd |
topic_facet | Mathematics MATHEMATICS / Numerical Analysis MATHEMATICS / Geometry / Differential Conformal invariants Decomposition (Mathematics) Mathematik Globale Riemannsche Geometrie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=439689 |
work_keys_str_mv | AT alexakisspyros thedecompositionofglobalconformalinvariants |