Character theory for the odd order theorem:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2000
|
Schriftenreihe: | London Mathematical Society lecture note series
272 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | "First published in French by Astérisque as Théorie des charactéres dans le théoreme de Feit et Thompson and Le théorem de Bender-Suzuki II"--T.p. verso Includes bibliographical references and index Pt. I. - Character Theory for the Odd Order Theorem - 1 - Preliminary Results from Character Theory - 2 - The Dade Isometry - 3 - T1-Subsets with Cyclic Normalizers - 4 - The Dade Isometry for a Certain Type of Subgroup - 5 - Coherence - 6 - Some Coherence Theorems - 7 - Non-existence of a Certain Type of Group of Odd Order - 8 - Structure of a Minimal Simple Group of Odd Order - 9 - On the Maximal Subgroups of G of Types II, III and IV. - 10 - Maximal Subgroups of Types III, IV and V. - 11 - Maximal Subgroups of Types III and IV. - 12 - Maximal Subgroups of Type I. - 13 - The Subgroups S and T. - 14 - Non-existence of G -- - Pt. II. - A Theorem of Suzuki - Ch. I. - General Properties of G. - 1 - Consequences of Hypothesis (A1) - 2 - The Structure of Q and of K. |
Beschreibung: | 1 Online-Ressource (vii, 154 p.) |
ISBN: | 0511565860 052164660X 1107089190 9780511565861 9780521646604 9781107089198 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043097653 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2000 |||| o||u| ||||||eng d | ||
020 | |a 0511565860 |c electronic bk. |9 0-511-56586-0 | ||
020 | |a 052164660X |9 0-521-64660-X | ||
020 | |a 1107089190 |c electronic bk. |9 1-107-08919-0 | ||
020 | |a 9780511565861 |c electronic bk. |9 978-0-511-56586-1 | ||
020 | |a 9780521646604 |9 978-0-521-64660-4 | ||
020 | |a 9781107089198 |c electronic bk. |9 978-1-107-08919-8 | ||
035 | |a (OCoLC)852896275 | ||
035 | |a (DE-599)BVBBV043097653 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 511/.2 |2 22 | |
100 | 1 | |a Peterfalvi, Thomas |e Verfasser |4 aut | |
245 | 1 | 0 | |a Character theory for the odd order theorem |c Thomas Peterfalvi ; translated by Robert Sandling |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2000 | |
300 | |a 1 Online-Ressource (vii, 154 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 272 | |
500 | |a "First published in French by Astérisque as Théorie des charactéres dans le théoreme de Feit et Thompson and Le théorem de Bender-Suzuki II"--T.p. verso | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Pt. I. - Character Theory for the Odd Order Theorem - 1 - Preliminary Results from Character Theory - 2 - The Dade Isometry - 3 - T1-Subsets with Cyclic Normalizers - 4 - The Dade Isometry for a Certain Type of Subgroup - 5 - Coherence - 6 - Some Coherence Theorems - 7 - Non-existence of a Certain Type of Group of Odd Order - 8 - Structure of a Minimal Simple Group of Odd Order - 9 - On the Maximal Subgroups of G of Types II, III and IV. - 10 - Maximal Subgroups of Types III, IV and V. - 11 - Maximal Subgroups of Types III and IV. - 12 - Maximal Subgroups of Type I. - 13 - The Subgroups S and T. - 14 - Non-existence of G -- - Pt. II. - A Theorem of Suzuki - Ch. I. - General Properties of G. - 1 - Consequences of Hypothesis (A1) - 2 - The Structure of Q and of K. | ||
650 | 7 | |a Feit-Thompson, Théorème de |2 ram | |
650 | 7 | |a Groupes finis |2 ram | |
650 | 7 | |a Caractères de groupes |2 ram | |
650 | 7 | |a Eindige groepen |2 gtt | |
650 | 7 | |a Characters |2 gtt | |
650 | 7 | |a Grupos finitos |2 larpcal | |
650 | 7 | |a Álgebra |2 larpcal | |
650 | 7 | |a Charakter <Gruppentheorie> |2 swd | |
650 | 7 | |a Feit-Thompson-Theorem |2 swd | |
650 | 7 | |a Endliche Gruppe |2 swd | |
650 | 7 | |a MATHEMATICS / General |2 bisacsh | |
650 | 7 | |a Characters of groups |2 fast | |
650 | 7 | |a Feit-Thompson theorem |2 fast | |
650 | 7 | |a Finite groups |2 fast | |
650 | 4 | |a Feit-Thompson theorem | |
650 | 4 | |a Finite groups | |
650 | 4 | |a Characters of groups | |
650 | 0 | 7 | |a Charakter |g Gruppentheorie |0 (DE-588)4158438-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Endliche Gruppe |0 (DE-588)4014651-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Feit-Thompson-Theorem |0 (DE-588)4391595-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Feit-Thompson-Theorem |0 (DE-588)4391595-4 |D s |
689 | 0 | 1 | |a Endliche Gruppe |0 (DE-588)4014651-0 |D s |
689 | 0 | 2 | |a Charakter |g Gruppentheorie |0 (DE-588)4158438-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569282 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028521844 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569282 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569282 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175504435052544 |
---|---|
any_adam_object | |
author | Peterfalvi, Thomas |
author_facet | Peterfalvi, Thomas |
author_role | aut |
author_sort | Peterfalvi, Thomas |
author_variant | t p tp |
building | Verbundindex |
bvnumber | BV043097653 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)852896275 (DE-599)BVBBV043097653 |
dewey-full | 511/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.2 |
dewey-search | 511/.2 |
dewey-sort | 3511 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03862nmm a2200721zcb4500</leader><controlfield tag="001">BV043097653</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511565860</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-511-56586-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">052164660X</subfield><subfield code="9">0-521-64660-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107089190</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-08919-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511565861</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-511-56586-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521646604</subfield><subfield code="9">978-0-521-64660-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107089198</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-08919-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852896275</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043097653</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Peterfalvi, Thomas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Character theory for the odd order theorem</subfield><subfield code="c">Thomas Peterfalvi ; translated by Robert Sandling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 154 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">272</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"First published in French by Astérisque as Théorie des charactéres dans le théoreme de Feit et Thompson and Le théorem de Bender-Suzuki II"--T.p. verso</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Pt. I. - Character Theory for the Odd Order Theorem - 1 - Preliminary Results from Character Theory - 2 - The Dade Isometry - 3 - T1-Subsets with Cyclic Normalizers - 4 - The Dade Isometry for a Certain Type of Subgroup - 5 - Coherence - 6 - Some Coherence Theorems - 7 - Non-existence of a Certain Type of Group of Odd Order - 8 - Structure of a Minimal Simple Group of Odd Order - 9 - On the Maximal Subgroups of G of Types II, III and IV. - 10 - Maximal Subgroups of Types III, IV and V. - 11 - Maximal Subgroups of Types III and IV. - 12 - Maximal Subgroups of Type I. - 13 - The Subgroups S and T. - 14 - Non-existence of G -- - Pt. II. - A Theorem of Suzuki - Ch. I. - General Properties of G. - 1 - Consequences of Hypothesis (A1) - 2 - The Structure of Q and of K.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feit-Thompson, Théorème de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groupes finis</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Caractères de groupes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Eindige groepen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Characters</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grupos finitos</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Álgebra</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Charakter <Gruppentheorie></subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feit-Thompson-Theorem</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Characters of groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feit-Thompson theorem</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feit-Thompson theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characters of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Charakter</subfield><subfield code="g">Gruppentheorie</subfield><subfield code="0">(DE-588)4158438-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Feit-Thompson-Theorem</subfield><subfield code="0">(DE-588)4391595-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Feit-Thompson-Theorem</subfield><subfield code="0">(DE-588)4391595-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Charakter</subfield><subfield code="g">Gruppentheorie</subfield><subfield code="0">(DE-588)4158438-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569282</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028521844</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569282</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569282</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043097653 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:20Z |
institution | BVB |
isbn | 0511565860 052164660X 1107089190 9780511565861 9780521646604 9781107089198 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028521844 |
oclc_num | 852896275 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (vii, 154 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Peterfalvi, Thomas Verfasser aut Character theory for the odd order theorem Thomas Peterfalvi ; translated by Robert Sandling Cambridge Cambridge University Press 2000 1 Online-Ressource (vii, 154 p.) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 272 "First published in French by Astérisque as Théorie des charactéres dans le théoreme de Feit et Thompson and Le théorem de Bender-Suzuki II"--T.p. verso Includes bibliographical references and index Pt. I. - Character Theory for the Odd Order Theorem - 1 - Preliminary Results from Character Theory - 2 - The Dade Isometry - 3 - T1-Subsets with Cyclic Normalizers - 4 - The Dade Isometry for a Certain Type of Subgroup - 5 - Coherence - 6 - Some Coherence Theorems - 7 - Non-existence of a Certain Type of Group of Odd Order - 8 - Structure of a Minimal Simple Group of Odd Order - 9 - On the Maximal Subgroups of G of Types II, III and IV. - 10 - Maximal Subgroups of Types III, IV and V. - 11 - Maximal Subgroups of Types III and IV. - 12 - Maximal Subgroups of Type I. - 13 - The Subgroups S and T. - 14 - Non-existence of G -- - Pt. II. - A Theorem of Suzuki - Ch. I. - General Properties of G. - 1 - Consequences of Hypothesis (A1) - 2 - The Structure of Q and of K. Feit-Thompson, Théorème de ram Groupes finis ram Caractères de groupes ram Eindige groepen gtt Characters gtt Grupos finitos larpcal Álgebra larpcal Charakter <Gruppentheorie> swd Feit-Thompson-Theorem swd Endliche Gruppe swd MATHEMATICS / General bisacsh Characters of groups fast Feit-Thompson theorem fast Finite groups fast Feit-Thompson theorem Finite groups Characters of groups Charakter Gruppentheorie (DE-588)4158438-7 gnd rswk-swf Endliche Gruppe (DE-588)4014651-0 gnd rswk-swf Feit-Thompson-Theorem (DE-588)4391595-4 gnd rswk-swf Feit-Thompson-Theorem (DE-588)4391595-4 s Endliche Gruppe (DE-588)4014651-0 s Charakter Gruppentheorie (DE-588)4158438-7 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569282 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Peterfalvi, Thomas Character theory for the odd order theorem Feit-Thompson, Théorème de ram Groupes finis ram Caractères de groupes ram Eindige groepen gtt Characters gtt Grupos finitos larpcal Álgebra larpcal Charakter <Gruppentheorie> swd Feit-Thompson-Theorem swd Endliche Gruppe swd MATHEMATICS / General bisacsh Characters of groups fast Feit-Thompson theorem fast Finite groups fast Feit-Thompson theorem Finite groups Characters of groups Charakter Gruppentheorie (DE-588)4158438-7 gnd Endliche Gruppe (DE-588)4014651-0 gnd Feit-Thompson-Theorem (DE-588)4391595-4 gnd |
subject_GND | (DE-588)4158438-7 (DE-588)4014651-0 (DE-588)4391595-4 |
title | Character theory for the odd order theorem |
title_auth | Character theory for the odd order theorem |
title_exact_search | Character theory for the odd order theorem |
title_full | Character theory for the odd order theorem Thomas Peterfalvi ; translated by Robert Sandling |
title_fullStr | Character theory for the odd order theorem Thomas Peterfalvi ; translated by Robert Sandling |
title_full_unstemmed | Character theory for the odd order theorem Thomas Peterfalvi ; translated by Robert Sandling |
title_short | Character theory for the odd order theorem |
title_sort | character theory for the odd order theorem |
topic | Feit-Thompson, Théorème de ram Groupes finis ram Caractères de groupes ram Eindige groepen gtt Characters gtt Grupos finitos larpcal Álgebra larpcal Charakter <Gruppentheorie> swd Feit-Thompson-Theorem swd Endliche Gruppe swd MATHEMATICS / General bisacsh Characters of groups fast Feit-Thompson theorem fast Finite groups fast Feit-Thompson theorem Finite groups Characters of groups Charakter Gruppentheorie (DE-588)4158438-7 gnd Endliche Gruppe (DE-588)4014651-0 gnd Feit-Thompson-Theorem (DE-588)4391595-4 gnd |
topic_facet | Feit-Thompson, Théorème de Groupes finis Caractères de groupes Eindige groepen Characters Grupos finitos Álgebra Charakter <Gruppentheorie> Feit-Thompson-Theorem Endliche Gruppe MATHEMATICS / General Characters of groups Feit-Thompson theorem Finite groups Charakter Gruppentheorie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569282 |
work_keys_str_mv | AT peterfalvithomas charactertheoryfortheoddordertheorem |