Radon transforms and the rigidity of the grassmannians:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
2004
|
Schriftenreihe: | Annals of mathematics studies
no. 156 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric? Th |
Beschreibung: | 1 Online-Ressource (333 pages) |
ISBN: | 1400826179 9781400826179 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043095148 | ||
003 | DE-604 | ||
005 | 20170119 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2004 |||| o||u| ||||||eng d | ||
020 | |a 1400826179 |c electronic bk. |9 1-4008-2617-9 | ||
020 | |a 9781400826179 |c electronic bk. |9 978-1-4008-2617-9 | ||
035 | |a (OCoLC)437268713 | ||
035 | |a (DE-599)BVBBV043095148 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.723 |2 22 | |
100 | 1 | |a Gasqui, Jacques |e Verfasser |0 (DE-588)136201636 |4 aut | |
245 | 1 | 0 | |a Radon transforms and the rigidity of the grassmannians |c Jacques Gasqui and Hubert Goldschmidt |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c 2004 | |
300 | |a 1 Online-Ressource (333 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Annals of mathematics studies |v no. 156 | |
500 | |a This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric? Th | ||
600 | 1 | 4 | |a Goldschmidt, Hubert / 1942- |
600 | 1 | 4 | |a Goldschmidt, Hubert |d 1942- |
650 | 7 | |a MATHEMATICS / Functional Analysis |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Geometry / Differential |2 bisacsh | |
650 | 4 | |a Radon transforms | |
650 | 4 | |a Rigidity (Geometry) | |
650 | 0 | 7 | |a Radon-Transformation |0 (DE-588)4479199-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graßmann-Mannigfaltigkeit |0 (DE-588)4158085-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Radon-Transformation |0 (DE-588)4479199-9 |D s |
689 | 0 | 1 | |a Graßmann-Mannigfaltigkeit |0 (DE-588)4158085-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286805 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028519340 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286805 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286805 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175499653545984 |
---|---|
any_adam_object | |
author | Gasqui, Jacques |
author_GND | (DE-588)136201636 |
author_facet | Gasqui, Jacques |
author_role | aut |
author_sort | Gasqui, Jacques |
author_variant | j g jg |
building | Verbundindex |
bvnumber | BV043095148 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)437268713 (DE-599)BVBBV043095148 |
dewey-full | 515/.723 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.723 |
dewey-search | 515/.723 |
dewey-sort | 3515 3723 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02731nmm a2200493zcb4500</leader><controlfield tag="001">BV043095148</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170119 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400826179</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-2617-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400826179</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-2617-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)437268713</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043095148</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.723</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gasqui, Jacques</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136201636</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Radon transforms and the rigidity of the grassmannians</subfield><subfield code="c">Jacques Gasqui and Hubert Goldschmidt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (333 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">no. 156</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric? Th</subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Goldschmidt, Hubert / 1942-</subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Goldschmidt, Hubert</subfield><subfield code="d">1942-</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Functional Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Differential</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radon transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rigidity (Geometry)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Radon-Transformation</subfield><subfield code="0">(DE-588)4479199-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graßmann-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4158085-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Radon-Transformation</subfield><subfield code="0">(DE-588)4479199-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Graßmann-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4158085-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286805</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028519340</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286805</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286805</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043095148 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:16Z |
institution | BVB |
isbn | 1400826179 9781400826179 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028519340 |
oclc_num | 437268713 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (333 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Princeton University Press |
record_format | marc |
series2 | Annals of mathematics studies |
spelling | Gasqui, Jacques Verfasser (DE-588)136201636 aut Radon transforms and the rigidity of the grassmannians Jacques Gasqui and Hubert Goldschmidt Princeton, N.J. Princeton University Press 2004 1 Online-Ressource (333 pages) txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies no. 156 This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric? Th Goldschmidt, Hubert / 1942- Goldschmidt, Hubert 1942- MATHEMATICS / Functional Analysis bisacsh MATHEMATICS / Geometry / Differential bisacsh Radon transforms Rigidity (Geometry) Radon-Transformation (DE-588)4479199-9 gnd rswk-swf Graßmann-Mannigfaltigkeit (DE-588)4158085-0 gnd rswk-swf Radon-Transformation (DE-588)4479199-9 s Graßmann-Mannigfaltigkeit (DE-588)4158085-0 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286805 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gasqui, Jacques Radon transforms and the rigidity of the grassmannians Goldschmidt, Hubert / 1942- Goldschmidt, Hubert 1942- MATHEMATICS / Functional Analysis bisacsh MATHEMATICS / Geometry / Differential bisacsh Radon transforms Rigidity (Geometry) Radon-Transformation (DE-588)4479199-9 gnd Graßmann-Mannigfaltigkeit (DE-588)4158085-0 gnd |
subject_GND | (DE-588)4479199-9 (DE-588)4158085-0 |
title | Radon transforms and the rigidity of the grassmannians |
title_auth | Radon transforms and the rigidity of the grassmannians |
title_exact_search | Radon transforms and the rigidity of the grassmannians |
title_full | Radon transforms and the rigidity of the grassmannians Jacques Gasqui and Hubert Goldschmidt |
title_fullStr | Radon transforms and the rigidity of the grassmannians Jacques Gasqui and Hubert Goldschmidt |
title_full_unstemmed | Radon transforms and the rigidity of the grassmannians Jacques Gasqui and Hubert Goldschmidt |
title_short | Radon transforms and the rigidity of the grassmannians |
title_sort | radon transforms and the rigidity of the grassmannians |
topic | Goldschmidt, Hubert / 1942- Goldschmidt, Hubert 1942- MATHEMATICS / Functional Analysis bisacsh MATHEMATICS / Geometry / Differential bisacsh Radon transforms Rigidity (Geometry) Radon-Transformation (DE-588)4479199-9 gnd Graßmann-Mannigfaltigkeit (DE-588)4158085-0 gnd |
topic_facet | Goldschmidt, Hubert / 1942- Goldschmidt, Hubert 1942- MATHEMATICS / Functional Analysis MATHEMATICS / Geometry / Differential Radon transforms Rigidity (Geometry) Radon-Transformation Graßmann-Mannigfaltigkeit |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286805 |
work_keys_str_mv | AT gasquijacques radontransformsandtherigidityofthegrassmannians |