Optoisolation circuits: nonlinearity applications in engineering : optoisolation nonlinear dynamic and chaos : application in engineering
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Co
c2012
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references This book describes a new concept in analyzing circuits, which includes optoisolation elements. The analysis is based on nonlinear dynamics and chaos models and shows comprehensive benefits and results. All conceptual optoisolation circuits are innovative and can be broadly implemented in engineering applications. The dynamics of optoisolation circuits provides several ways to use them in a variety of applications covering wide areas. The presentation fills the gap of analytical methods for optoisolation circuits analysis, concrete examples, and geometric examples. The optoisolation circuits analysis is developed systematically, starting with basic optoisolation circuits differential equations and their bifurcations, followed by Fixed points analysis, limit cycles and their bifurcations. Optoisolation circuits can be characterized as Lorenz equations, chaos, iterated maps, period doubling and attractors. This book is aimed at electrical and electronic engineers, students and researchers in physics as well. A unique features of the book are its emphasis on practical and innovative engineering applications. These include optocouplers in a variety topological structures, passive components, conservative elements, dissipative elements, active devices, etc., In each chapter, the concept is developed from the basic assumptions up to the final engineering outcomes. The scientific background is explained at basic and advance levels and closely integrated with mathematical theory. Many examples are presented in this book and it is also ideal for an intermediate level courses at graduate level studies. It is also ideal for engineer who has not had formal instruction in nonlinear dynamics, but who now desires to fill the gap between innovative optoisolation circuits and advance mathematical analysis methods 1. Optoisolation products descriptions. 1.1. Optocouplers general description. 1.2. Opto negative differential resistance (NDR). 1.3. Absolute negative differential resistance (NDR). 1.4. Optocoupler (LED, photo transistor) as a basic negative differential resistance (NDR) circuit. 1.5. Optocoupler (LED, photo transistor) NDR circuit mathematical analysis. 1.6. Controlling NDR characteristics by optocoupler (LED, phototransistor) parameters. 1.7. Optocoupler (LED, photo transistor) computer analysis. 1.8. Oscillations and regenerative amplification using opto negative differential resistance (NDR). 1.9. Radio FM generation -- Parameter variation method using opto NDR as compensation elements. 1.10. Multi channel bi directional digital optocoupler. 1.11. Exercises -- - 2. Optoisolation one dimensional flow and bifurcation. 2.1. Optocoupler flow on the line. 2.2. Optocoupler fixed point and stability. 2.3. Optocoupler fixed point and stability analysis using Taylor expansion estimation. 2.4. Optocoupler saddle -- node bifurcation. 2.5. Optocoupler transcritical bifurcation. 2.6. Optocoupler pitchfork bifurcation. 2.7. Optocoupler imperfect bifurcations and catastrophes. 2.8. Optocoupler flow on the circle. 2.9. Optocoupler flow on the circle uniform oscillation. 2.10. Optocoupler flow on the circle non-uniform oscillation. 2.11. Exercises -- 3. Optoisolation negative differential resistance (NDR) circuits as a dynamical system. 3.1. OPTO NDR basic dynamical circuit (Case I). 3.2. OPTO NDR fixed points and stability (Case I). 3.3. OPTO NDR basic dynamical circuit (Case II). 3.4. OPTO NDR fixed points and stability (Case II). 3.5. OPTO NDR linear stability analysis. 3.6. OPTO NDR bifurcation. 3.7. OPTO NDR cascade structure. 3.8. Exercises -- - 4. Optoisolation negative differential resistance (NDR) circuits in a topologic structures. 4.1. OPTO NDR flow on the line. 4.2. OPTO NDR fixed points and stability. 4.3. OPTO NDR circuit dynamic with oscillation source. 4.4. OPTO NDR circuit dynamic with inductor and output capacitor. 4.5. OPTO NDR circuit dynamic with serial capacitor. 4.6. Exercises -- 5. Photocoupled FET's structure negative differential resistance (NDR) circuits. 5.1. Photocoupled FET general description. 5.2. Combinational connection of photocoupled FET's -- negative differential resistance (NDR) circuit. 5.3. Photocoupled FET's circuit (NDR) flow on the line. 5.4. Photocoupled FET's circuit (NDR) one dimensional map discrete time. 5.5. Photocoupled FET's circuit (NDR) one dimensional R[symbol] map discrete time. 5.6. Photocoupled FET's circuit (NDR) one dimensional R[symbol] chaos and periodic windows. 5.7. Exercises 6. Optoisolation's circuits two dimensional flow. 6.1. Optoisolation's circuits two dimensional flow linear/nonlinear systems analysis using Taylor expansion estimation. 6.2. Optoisolation's circuits two dimensional flow linear/nonlinear systems analysis using Taylor expansion estimation -- Fixed points, stability. 6.3. Optoisolation's circuits two dimensional flow linear/nonlinear systems (exponential terms). 6.4. Optoisolation's circuits two dimensional flow bifurcation. 6.5. Optoisolation's circuits two dimensional flow center. 6.6. Optoisolation' circuit two dimensional flow k2 = 0, V2 = 0, k1 = 0 or k1 <> 0. 6.7. Exercises -- - 7. Optoisolation's circuits with time delay parameters. 7.1. Delayed optoisolation circuit general description. 7.2. Delayed OptoNDR circuit dynamic analysis. 7.3. OptoNDR circuit stability analysis under delayed variables in time. 7.4. OptoNDR circuit stability switching under parameters variations. 7.5. Delayed optoisolation system (higher order characteristic equation) dynamic analysis. 7.6. Delayed optoisolation system stability switching under parameters variations. 7.7. Exercises -- 8. Optoisolation's circuits time periodic delay differential equation (DDE). 8.1. Delayed optoisolation circuit with periodic source Mathieu equation. 8.2. Delayed optoisolation circuit implementation with periodic source. 8.3. Delayed OptoNDR circuit implementation with periodic source. 8.4. Delayed OptoNDR circuit implementation with periodic source stability analysis. 8.5. Delayed OptoNDR circuit characteristic equation with periodic source stability analysis. 8.6. Exercises -- - 9. Optoisolation's circuits chaos characteristics. 9.1. Optoisolation Lorenz system. 9.2. Lorenzian optoisolation system properties. 9.3. Lorenzian optoisolation system chaos and attractors. 9.4. Optoisolation circuit Lorenz map and system parameters space. 9.5. Optoisolation system one dimensional map. 9.6. Optoisolation system one dimensional maps fixed points and logistic map. 9.7. Exercises -- 10. Optoisolation's bifurcation behaviors -- Investigation, comparison and conclusions |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9789814317016 9814317012 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043094105 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2012 |||| o||u| ||||||eng d | ||
020 | |a 9789814317016 |c electronic bk. |9 978-981-4317-01-6 | ||
020 | |a 9814317012 |c electronic bk. |9 981-4317-01-2 | ||
035 | |a (OCoLC)810317519 | ||
035 | |a (DE-599)BVBBV043094105 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 621.319/2 |2 23 | |
100 | 1 | |a Aluf, Ofer |e Verfasser |4 aut | |
245 | 1 | 0 | |a Optoisolation circuits |b nonlinearity applications in engineering : optoisolation nonlinear dynamic and chaos : application in engineering |c Ofer Aluf |
264 | 1 | |a Singapore |b World Scientific Publishing Co |c c2012 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references | ||
500 | |a This book describes a new concept in analyzing circuits, which includes optoisolation elements. The analysis is based on nonlinear dynamics and chaos models and shows comprehensive benefits and results. All conceptual optoisolation circuits are innovative and can be broadly implemented in engineering applications. The dynamics of optoisolation circuits provides several ways to use them in a variety of applications covering wide areas. The presentation fills the gap of analytical methods for optoisolation circuits analysis, concrete examples, and geometric examples. The optoisolation circuits analysis is developed systematically, starting with basic optoisolation circuits differential equations and their bifurcations, followed by Fixed points analysis, limit cycles and their bifurcations. Optoisolation circuits can be characterized as Lorenz equations, chaos, iterated maps, period doubling and attractors. This book is aimed at electrical and electronic engineers, students and researchers in physics as well. A unique features of the book are its emphasis on practical and innovative engineering applications. These include optocouplers in a variety topological structures, passive components, conservative elements, dissipative elements, active devices, etc., In each chapter, the concept is developed from the basic assumptions up to the final engineering outcomes. The scientific background is explained at basic and advance levels and closely integrated with mathematical theory. Many examples are presented in this book and it is also ideal for an intermediate level courses at graduate level studies. It is also ideal for engineer who has not had formal instruction in nonlinear dynamics, but who now desires to fill the gap between innovative optoisolation circuits and advance mathematical analysis methods | ||
500 | |a 1. Optoisolation products descriptions. 1.1. Optocouplers general description. 1.2. Opto negative differential resistance (NDR). 1.3. Absolute negative differential resistance (NDR). 1.4. Optocoupler (LED, photo transistor) as a basic negative differential resistance (NDR) circuit. 1.5. Optocoupler (LED, photo transistor) NDR circuit mathematical analysis. 1.6. Controlling NDR characteristics by optocoupler (LED, phototransistor) parameters. 1.7. Optocoupler (LED, photo transistor) computer analysis. 1.8. Oscillations and regenerative amplification using opto negative differential resistance (NDR). 1.9. Radio FM generation -- Parameter variation method using opto NDR as compensation elements. 1.10. Multi channel bi directional digital optocoupler. 1.11. Exercises -- | ||
500 | |a - 2. Optoisolation one dimensional flow and bifurcation. 2.1. Optocoupler flow on the line. 2.2. Optocoupler fixed point and stability. 2.3. Optocoupler fixed point and stability analysis using Taylor expansion estimation. 2.4. Optocoupler saddle -- node bifurcation. 2.5. Optocoupler transcritical bifurcation. 2.6. Optocoupler pitchfork bifurcation. 2.7. Optocoupler imperfect bifurcations and catastrophes. 2.8. Optocoupler flow on the circle. 2.9. Optocoupler flow on the circle uniform oscillation. 2.10. Optocoupler flow on the circle non-uniform oscillation. 2.11. Exercises -- 3. Optoisolation negative differential resistance (NDR) circuits as a dynamical system. 3.1. OPTO NDR basic dynamical circuit (Case I). 3.2. OPTO NDR fixed points and stability (Case I). 3.3. OPTO NDR basic dynamical circuit (Case II). 3.4. OPTO NDR fixed points and stability (Case II). 3.5. OPTO NDR linear stability analysis. 3.6. OPTO NDR bifurcation. 3.7. OPTO NDR cascade structure. 3.8. Exercises -- | ||
500 | |a - 4. Optoisolation negative differential resistance (NDR) circuits in a topologic structures. 4.1. OPTO NDR flow on the line. 4.2. OPTO NDR fixed points and stability. 4.3. OPTO NDR circuit dynamic with oscillation source. 4.4. OPTO NDR circuit dynamic with inductor and output capacitor. 4.5. OPTO NDR circuit dynamic with serial capacitor. 4.6. Exercises -- 5. Photocoupled FET's structure negative differential resistance (NDR) circuits. 5.1. Photocoupled FET general description. 5.2. Combinational connection of photocoupled FET's -- negative differential resistance (NDR) circuit. 5.3. Photocoupled FET's circuit (NDR) flow on the line. 5.4. Photocoupled FET's circuit (NDR) one dimensional map discrete time. 5.5. Photocoupled FET's circuit (NDR) one dimensional R[symbol] map discrete time. 5.6. Photocoupled FET's circuit (NDR) one dimensional R[symbol] chaos and periodic windows. 5.7. Exercises | ||
500 | |a 6. Optoisolation's circuits two dimensional flow. 6.1. Optoisolation's circuits two dimensional flow linear/nonlinear systems analysis using Taylor expansion estimation. 6.2. Optoisolation's circuits two dimensional flow linear/nonlinear systems analysis using Taylor expansion estimation -- Fixed points, stability. 6.3. Optoisolation's circuits two dimensional flow linear/nonlinear systems (exponential terms). 6.4. Optoisolation's circuits two dimensional flow bifurcation. 6.5. Optoisolation's circuits two dimensional flow center. 6.6. Optoisolation' circuit two dimensional flow k2 = 0, V2 = 0, k1 = 0 or k1 <> 0. 6.7. Exercises -- | ||
500 | |a - 7. Optoisolation's circuits with time delay parameters. 7.1. Delayed optoisolation circuit general description. 7.2. Delayed OptoNDR circuit dynamic analysis. 7.3. OptoNDR circuit stability analysis under delayed variables in time. 7.4. OptoNDR circuit stability switching under parameters variations. 7.5. Delayed optoisolation system (higher order characteristic equation) dynamic analysis. 7.6. Delayed optoisolation system stability switching under parameters variations. 7.7. Exercises -- 8. Optoisolation's circuits time periodic delay differential equation (DDE). 8.1. Delayed optoisolation circuit with periodic source Mathieu equation. 8.2. Delayed optoisolation circuit implementation with periodic source. 8.3. Delayed OptoNDR circuit implementation with periodic source. 8.4. Delayed OptoNDR circuit implementation with periodic source stability analysis. 8.5. Delayed OptoNDR circuit characteristic equation with periodic source stability analysis. 8.6. Exercises -- | ||
500 | |a - 9. Optoisolation's circuits chaos characteristics. 9.1. Optoisolation Lorenz system. 9.2. Lorenzian optoisolation system properties. 9.3. Lorenzian optoisolation system chaos and attractors. 9.4. Optoisolation circuit Lorenz map and system parameters space. 9.5. Optoisolation system one dimensional map. 9.6. Optoisolation system one dimensional maps fixed points and logistic map. 9.7. Exercises -- 10. Optoisolation's bifurcation behaviors -- Investigation, comparison and conclusions | ||
650 | 7 | |a TECHNOLOGY & ENGINEERING / Electrical |2 bisacsh | |
650 | 7 | |a Electric circuits, Nonlinear |2 fast | |
650 | 7 | |a Optoelectronic devices |2 fast | |
650 | 4 | |a Electric circuits, Nonlinear | |
650 | 4 | |a Optoelectronic devices | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=478632 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028518297 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=478632 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=478632 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175497709486080 |
---|---|
any_adam_object | |
author | Aluf, Ofer |
author_facet | Aluf, Ofer |
author_role | aut |
author_sort | Aluf, Ofer |
author_variant | o a oa |
building | Verbundindex |
bvnumber | BV043094105 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)810317519 (DE-599)BVBBV043094105 |
dewey-full | 621.319/2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.319/2 |
dewey-search | 621.319/2 |
dewey-sort | 3621.319 12 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08451nmm a2200481zc 4500</leader><controlfield tag="001">BV043094105</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814317016</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4317-01-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814317012</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4317-01-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)810317519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043094105</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.319/2</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aluf, Ofer</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optoisolation circuits</subfield><subfield code="b">nonlinearity applications in engineering : optoisolation nonlinear dynamic and chaos : application in engineering</subfield><subfield code="c">Ofer Aluf</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Co</subfield><subfield code="c">c2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book describes a new concept in analyzing circuits, which includes optoisolation elements. The analysis is based on nonlinear dynamics and chaos models and shows comprehensive benefits and results. All conceptual optoisolation circuits are innovative and can be broadly implemented in engineering applications. The dynamics of optoisolation circuits provides several ways to use them in a variety of applications covering wide areas. The presentation fills the gap of analytical methods for optoisolation circuits analysis, concrete examples, and geometric examples. The optoisolation circuits analysis is developed systematically, starting with basic optoisolation circuits differential equations and their bifurcations, followed by Fixed points analysis, limit cycles and their bifurcations. Optoisolation circuits can be characterized as Lorenz equations, chaos, iterated maps, period doubling and attractors. This book is aimed at electrical and electronic engineers, students and researchers in physics as well. A unique features of the book are its emphasis on practical and innovative engineering applications. These include optocouplers in a variety topological structures, passive components, conservative elements, dissipative elements, active devices, etc., In each chapter, the concept is developed from the basic assumptions up to the final engineering outcomes. The scientific background is explained at basic and advance levels and closely integrated with mathematical theory. Many examples are presented in this book and it is also ideal for an intermediate level courses at graduate level studies. It is also ideal for engineer who has not had formal instruction in nonlinear dynamics, but who now desires to fill the gap between innovative optoisolation circuits and advance mathematical analysis methods</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Optoisolation products descriptions. 1.1. Optocouplers general description. 1.2. Opto negative differential resistance (NDR). 1.3. Absolute negative differential resistance (NDR). 1.4. Optocoupler (LED, photo transistor) as a basic negative differential resistance (NDR) circuit. 1.5. Optocoupler (LED, photo transistor) NDR circuit mathematical analysis. 1.6. Controlling NDR characteristics by optocoupler (LED, phototransistor) parameters. 1.7. Optocoupler (LED, photo transistor) computer analysis. 1.8. Oscillations and regenerative amplification using opto negative differential resistance (NDR). 1.9. Radio FM generation -- Parameter variation method using opto NDR as compensation elements. 1.10. Multi channel bi directional digital optocoupler. 1.11. Exercises -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 2. Optoisolation one dimensional flow and bifurcation. 2.1. Optocoupler flow on the line. 2.2. Optocoupler fixed point and stability. 2.3. Optocoupler fixed point and stability analysis using Taylor expansion estimation. 2.4. Optocoupler saddle -- node bifurcation. 2.5. Optocoupler transcritical bifurcation. 2.6. Optocoupler pitchfork bifurcation. 2.7. Optocoupler imperfect bifurcations and catastrophes. 2.8. Optocoupler flow on the circle. 2.9. Optocoupler flow on the circle uniform oscillation. 2.10. Optocoupler flow on the circle non-uniform oscillation. 2.11. Exercises -- 3. Optoisolation negative differential resistance (NDR) circuits as a dynamical system. 3.1. OPTO NDR basic dynamical circuit (Case I). 3.2. OPTO NDR fixed points and stability (Case I). 3.3. OPTO NDR basic dynamical circuit (Case II). 3.4. OPTO NDR fixed points and stability (Case II). 3.5. OPTO NDR linear stability analysis. 3.6. OPTO NDR bifurcation. 3.7. OPTO NDR cascade structure. 3.8. Exercises -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 4. Optoisolation negative differential resistance (NDR) circuits in a topologic structures. 4.1. OPTO NDR flow on the line. 4.2. OPTO NDR fixed points and stability. 4.3. OPTO NDR circuit dynamic with oscillation source. 4.4. OPTO NDR circuit dynamic with inductor and output capacitor. 4.5. OPTO NDR circuit dynamic with serial capacitor. 4.6. Exercises -- 5. Photocoupled FET's structure negative differential resistance (NDR) circuits. 5.1. Photocoupled FET general description. 5.2. Combinational connection of photocoupled FET's -- negative differential resistance (NDR) circuit. 5.3. Photocoupled FET's circuit (NDR) flow on the line. 5.4. Photocoupled FET's circuit (NDR) one dimensional map discrete time. 5.5. Photocoupled FET's circuit (NDR) one dimensional R[symbol] map discrete time. 5.6. Photocoupled FET's circuit (NDR) one dimensional R[symbol] chaos and periodic windows. 5.7. Exercises</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">6. Optoisolation's circuits two dimensional flow. 6.1. Optoisolation's circuits two dimensional flow linear/nonlinear systems analysis using Taylor expansion estimation. 6.2. Optoisolation's circuits two dimensional flow linear/nonlinear systems analysis using Taylor expansion estimation -- Fixed points, stability. 6.3. Optoisolation's circuits two dimensional flow linear/nonlinear systems (exponential terms). 6.4. Optoisolation's circuits two dimensional flow bifurcation. 6.5. Optoisolation's circuits two dimensional flow center. 6.6. Optoisolation' circuit two dimensional flow k2 = 0, V2 = 0, k1 = 0 or k1 <> 0. 6.7. Exercises -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 7. Optoisolation's circuits with time delay parameters. 7.1. Delayed optoisolation circuit general description. 7.2. Delayed OptoNDR circuit dynamic analysis. 7.3. OptoNDR circuit stability analysis under delayed variables in time. 7.4. OptoNDR circuit stability switching under parameters variations. 7.5. Delayed optoisolation system (higher order characteristic equation) dynamic analysis. 7.6. Delayed optoisolation system stability switching under parameters variations. 7.7. Exercises -- 8. Optoisolation's circuits time periodic delay differential equation (DDE). 8.1. Delayed optoisolation circuit with periodic source Mathieu equation. 8.2. Delayed optoisolation circuit implementation with periodic source. 8.3. Delayed OptoNDR circuit implementation with periodic source. 8.4. Delayed OptoNDR circuit implementation with periodic source stability analysis. 8.5. Delayed OptoNDR circuit characteristic equation with periodic source stability analysis. 8.6. Exercises -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 9. Optoisolation's circuits chaos characteristics. 9.1. Optoisolation Lorenz system. 9.2. Lorenzian optoisolation system properties. 9.3. Lorenzian optoisolation system chaos and attractors. 9.4. Optoisolation circuit Lorenz map and system parameters space. 9.5. Optoisolation system one dimensional map. 9.6. Optoisolation system one dimensional maps fixed points and logistic map. 9.7. Exercises -- 10. Optoisolation's bifurcation behaviors -- Investigation, comparison and conclusions</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Electrical</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electric circuits, Nonlinear</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optoelectronic devices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric circuits, Nonlinear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optoelectronic devices</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=478632</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028518297</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=478632</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=478632</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043094105 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:14Z |
institution | BVB |
isbn | 9789814317016 9814317012 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028518297 |
oclc_num | 810317519 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific Publishing Co |
record_format | marc |
spelling | Aluf, Ofer Verfasser aut Optoisolation circuits nonlinearity applications in engineering : optoisolation nonlinear dynamic and chaos : application in engineering Ofer Aluf Singapore World Scientific Publishing Co c2012 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references This book describes a new concept in analyzing circuits, which includes optoisolation elements. The analysis is based on nonlinear dynamics and chaos models and shows comprehensive benefits and results. All conceptual optoisolation circuits are innovative and can be broadly implemented in engineering applications. The dynamics of optoisolation circuits provides several ways to use them in a variety of applications covering wide areas. The presentation fills the gap of analytical methods for optoisolation circuits analysis, concrete examples, and geometric examples. The optoisolation circuits analysis is developed systematically, starting with basic optoisolation circuits differential equations and their bifurcations, followed by Fixed points analysis, limit cycles and their bifurcations. Optoisolation circuits can be characterized as Lorenz equations, chaos, iterated maps, period doubling and attractors. This book is aimed at electrical and electronic engineers, students and researchers in physics as well. A unique features of the book are its emphasis on practical and innovative engineering applications. These include optocouplers in a variety topological structures, passive components, conservative elements, dissipative elements, active devices, etc., In each chapter, the concept is developed from the basic assumptions up to the final engineering outcomes. The scientific background is explained at basic and advance levels and closely integrated with mathematical theory. Many examples are presented in this book and it is also ideal for an intermediate level courses at graduate level studies. It is also ideal for engineer who has not had formal instruction in nonlinear dynamics, but who now desires to fill the gap between innovative optoisolation circuits and advance mathematical analysis methods 1. Optoisolation products descriptions. 1.1. Optocouplers general description. 1.2. Opto negative differential resistance (NDR). 1.3. Absolute negative differential resistance (NDR). 1.4. Optocoupler (LED, photo transistor) as a basic negative differential resistance (NDR) circuit. 1.5. Optocoupler (LED, photo transistor) NDR circuit mathematical analysis. 1.6. Controlling NDR characteristics by optocoupler (LED, phototransistor) parameters. 1.7. Optocoupler (LED, photo transistor) computer analysis. 1.8. Oscillations and regenerative amplification using opto negative differential resistance (NDR). 1.9. Radio FM generation -- Parameter variation method using opto NDR as compensation elements. 1.10. Multi channel bi directional digital optocoupler. 1.11. Exercises -- - 2. Optoisolation one dimensional flow and bifurcation. 2.1. Optocoupler flow on the line. 2.2. Optocoupler fixed point and stability. 2.3. Optocoupler fixed point and stability analysis using Taylor expansion estimation. 2.4. Optocoupler saddle -- node bifurcation. 2.5. Optocoupler transcritical bifurcation. 2.6. Optocoupler pitchfork bifurcation. 2.7. Optocoupler imperfect bifurcations and catastrophes. 2.8. Optocoupler flow on the circle. 2.9. Optocoupler flow on the circle uniform oscillation. 2.10. Optocoupler flow on the circle non-uniform oscillation. 2.11. Exercises -- 3. Optoisolation negative differential resistance (NDR) circuits as a dynamical system. 3.1. OPTO NDR basic dynamical circuit (Case I). 3.2. OPTO NDR fixed points and stability (Case I). 3.3. OPTO NDR basic dynamical circuit (Case II). 3.4. OPTO NDR fixed points and stability (Case II). 3.5. OPTO NDR linear stability analysis. 3.6. OPTO NDR bifurcation. 3.7. OPTO NDR cascade structure. 3.8. Exercises -- - 4. Optoisolation negative differential resistance (NDR) circuits in a topologic structures. 4.1. OPTO NDR flow on the line. 4.2. OPTO NDR fixed points and stability. 4.3. OPTO NDR circuit dynamic with oscillation source. 4.4. OPTO NDR circuit dynamic with inductor and output capacitor. 4.5. OPTO NDR circuit dynamic with serial capacitor. 4.6. Exercises -- 5. Photocoupled FET's structure negative differential resistance (NDR) circuits. 5.1. Photocoupled FET general description. 5.2. Combinational connection of photocoupled FET's -- negative differential resistance (NDR) circuit. 5.3. Photocoupled FET's circuit (NDR) flow on the line. 5.4. Photocoupled FET's circuit (NDR) one dimensional map discrete time. 5.5. Photocoupled FET's circuit (NDR) one dimensional R[symbol] map discrete time. 5.6. Photocoupled FET's circuit (NDR) one dimensional R[symbol] chaos and periodic windows. 5.7. Exercises 6. Optoisolation's circuits two dimensional flow. 6.1. Optoisolation's circuits two dimensional flow linear/nonlinear systems analysis using Taylor expansion estimation. 6.2. Optoisolation's circuits two dimensional flow linear/nonlinear systems analysis using Taylor expansion estimation -- Fixed points, stability. 6.3. Optoisolation's circuits two dimensional flow linear/nonlinear systems (exponential terms). 6.4. Optoisolation's circuits two dimensional flow bifurcation. 6.5. Optoisolation's circuits two dimensional flow center. 6.6. Optoisolation' circuit two dimensional flow k2 = 0, V2 = 0, k1 = 0 or k1 <> 0. 6.7. Exercises -- - 7. Optoisolation's circuits with time delay parameters. 7.1. Delayed optoisolation circuit general description. 7.2. Delayed OptoNDR circuit dynamic analysis. 7.3. OptoNDR circuit stability analysis under delayed variables in time. 7.4. OptoNDR circuit stability switching under parameters variations. 7.5. Delayed optoisolation system (higher order characteristic equation) dynamic analysis. 7.6. Delayed optoisolation system stability switching under parameters variations. 7.7. Exercises -- 8. Optoisolation's circuits time periodic delay differential equation (DDE). 8.1. Delayed optoisolation circuit with periodic source Mathieu equation. 8.2. Delayed optoisolation circuit implementation with periodic source. 8.3. Delayed OptoNDR circuit implementation with periodic source. 8.4. Delayed OptoNDR circuit implementation with periodic source stability analysis. 8.5. Delayed OptoNDR circuit characteristic equation with periodic source stability analysis. 8.6. Exercises -- - 9. Optoisolation's circuits chaos characteristics. 9.1. Optoisolation Lorenz system. 9.2. Lorenzian optoisolation system properties. 9.3. Lorenzian optoisolation system chaos and attractors. 9.4. Optoisolation circuit Lorenz map and system parameters space. 9.5. Optoisolation system one dimensional map. 9.6. Optoisolation system one dimensional maps fixed points and logistic map. 9.7. Exercises -- 10. Optoisolation's bifurcation behaviors -- Investigation, comparison and conclusions TECHNOLOGY & ENGINEERING / Electrical bisacsh Electric circuits, Nonlinear fast Optoelectronic devices fast Electric circuits, Nonlinear Optoelectronic devices http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=478632 Aggregator Volltext |
spellingShingle | Aluf, Ofer Optoisolation circuits nonlinearity applications in engineering : optoisolation nonlinear dynamic and chaos : application in engineering TECHNOLOGY & ENGINEERING / Electrical bisacsh Electric circuits, Nonlinear fast Optoelectronic devices fast Electric circuits, Nonlinear Optoelectronic devices |
title | Optoisolation circuits nonlinearity applications in engineering : optoisolation nonlinear dynamic and chaos : application in engineering |
title_auth | Optoisolation circuits nonlinearity applications in engineering : optoisolation nonlinear dynamic and chaos : application in engineering |
title_exact_search | Optoisolation circuits nonlinearity applications in engineering : optoisolation nonlinear dynamic and chaos : application in engineering |
title_full | Optoisolation circuits nonlinearity applications in engineering : optoisolation nonlinear dynamic and chaos : application in engineering Ofer Aluf |
title_fullStr | Optoisolation circuits nonlinearity applications in engineering : optoisolation nonlinear dynamic and chaos : application in engineering Ofer Aluf |
title_full_unstemmed | Optoisolation circuits nonlinearity applications in engineering : optoisolation nonlinear dynamic and chaos : application in engineering Ofer Aluf |
title_short | Optoisolation circuits |
title_sort | optoisolation circuits nonlinearity applications in engineering optoisolation nonlinear dynamic and chaos application in engineering |
title_sub | nonlinearity applications in engineering : optoisolation nonlinear dynamic and chaos : application in engineering |
topic | TECHNOLOGY & ENGINEERING / Electrical bisacsh Electric circuits, Nonlinear fast Optoelectronic devices fast Electric circuits, Nonlinear Optoelectronic devices |
topic_facet | TECHNOLOGY & ENGINEERING / Electrical Electric circuits, Nonlinear Optoelectronic devices |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=478632 |
work_keys_str_mv | AT alufofer optoisolationcircuitsnonlinearityapplicationsinengineeringoptoisolationnonlineardynamicandchaosapplicationinengineering |