Examples in Markov Decision Processes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Company
2012
|
Schriftenreihe: | Imperial College Press optimization series
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | 3.2.3 A non-optimal strategy for which v x solves the optimality equation Preface; 1. Finite-Horizon Models; 1.1 Preliminaries; 1.2 Model Description; 1.3 Dynamic Programming Approach; 1.4 Examples; 1.4.1 Non-transitivity of the correlation; 1.4.2 The more frequently used control is not better; 1.4.3 Voting; 1.4.4 The secretary problem; 1.4.5 Constrained optimization; 1.4.6 Equivalent Markov selectors in non-atomic MDPs; 1.4.7 Strongly equivalent Markov selectors in nonatomic MDPs; 1.4.8 Stock exchange; 1.4.9 Markov or non-Markov strategy? Randomized or not? When is the Bellman principle violated?; 1.4.10 Uniformly optimal, but not optimal strategy 1.4.11 Martingales and the Bellman principle1.4.12 Conventions on expectation and infinities; 1.4.13 Nowhere-differentiable function vt(x); discontinuous function vt(x); 1.4.14 The non-measurable Bellman function; 1.4.15 No one strategy is uniformly -optimal; 1.4.16 Semi-continuous model; 2. Homogeneous Infinite-Horizon Models: Expected Total Loss; 2.1 Homogeneous Non-discounted Model; 2.2 Examples; 2.2.1 Mixed Strategies; 2.2.2 Multiple solutions to the optimality equation; 2.2.3 Finite model: multiple solutions to the optimality equation; conserving but not equalizing strategy 2.2.4 The single conserving strategy is not equalizing and not optimal2.2.5 When strategy iteration is not successful; 2.2.6 When value iteration is not successful; 2.2.7 When value iteration is not successful: positive model I; 2.2.8 When value iteration is not successful: positive model II; 2.2.9 Value iteration and stability in optimal stopping problems; 2.2.10 A non-equalizing strategy is uniformly optimal; 2.2.11 A stationary uniformly -optimal selector does not exist (positive model); 2.2.12 A stationary uniformly -optimal selector does not exist (negative model) 2.2.13 Finite-action negative model where a stationary uniformly -optimal selector does not exist2.2.14 Nearly uniformly optimal selectors in negative models; 2.2.15 Semi-continuous models and the blackmailer's dilemma; 2.2.16 Not a semi-continuous model; 2.2.17 The Bellman function is non-measurable and no one strategy is uniformly -optimal; 2.2.18 A randomized strategy is better than any selector (finite action space); 2.2.19 The fluid approximation does not work; 2.2.20 The fluid approximation: refined model; 2.2.21 Occupation measures: phantom solutions 2.2.22 Occupation measures in transient models2.2.23 Occupation measures and duality; 2.2.24 Occupation measures: compactness; 2.2.25 The bold strategy in gambling is not optimal (house limit); 2.2.26 The bold strategy in gambling is not optimal (inflation); 2.2.27 Search strategy for a moving target; 2.2.28 The three-way duel ("Truel"); 3. Homogeneous Infinite-Horizon Models: Discounted Loss; 3.1 Preliminaries; 3.2 Examples; 3.2.1 Phantom solutions of the optimality equation; 3.2.2 When value iteration is not successful: positive model This invaluable book provides approximately eighty examples illustrating the theory of controlled discrete-time Markov processes. Except for applications of the theory to real-life problems like stock exchange, queues, gambling, optimal search etc, the main attention is paid to counter-intuitive, unexpected properties of optimization problems. Such examples illustrate the importance of conditions imposed in the theorems on Markov Decision Processes. Many of the examples are based upon examples published earlier in journal articles or textbooks while several other examples are new. The aim was |
Beschreibung: | 1 Online-Ressource (308 pages) |
ISBN: | 1848167946 9781848167940 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043093511 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2012 |||| o||u| ||||||eng d | ||
020 | |a 1848167946 |c electronic bk. |9 1-84816-794-6 | ||
020 | |a 9781848167940 |c electronic bk. |9 978-1-84816-794-0 | ||
035 | |a (OCoLC)830162389 | ||
035 | |a (DE-599)BVBBV043093511 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 519.233 | |
100 | 1 | |a Piunovskiy, A. B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Examples in Markov Decision Processes |
264 | 1 | |a Singapore |b World Scientific Publishing Company |c 2012 | |
300 | |a 1 Online-Ressource (308 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Imperial College Press optimization series | |
500 | |a 3.2.3 A non-optimal strategy for which v x solves the optimality equation | ||
500 | |a Preface; 1. Finite-Horizon Models; 1.1 Preliminaries; 1.2 Model Description; 1.3 Dynamic Programming Approach; 1.4 Examples; 1.4.1 Non-transitivity of the correlation; 1.4.2 The more frequently used control is not better; 1.4.3 Voting; 1.4.4 The secretary problem; 1.4.5 Constrained optimization; 1.4.6 Equivalent Markov selectors in non-atomic MDPs; 1.4.7 Strongly equivalent Markov selectors in nonatomic MDPs; 1.4.8 Stock exchange; 1.4.9 Markov or non-Markov strategy? Randomized or not? When is the Bellman principle violated?; 1.4.10 Uniformly optimal, but not optimal strategy | ||
500 | |a 1.4.11 Martingales and the Bellman principle1.4.12 Conventions on expectation and infinities; 1.4.13 Nowhere-differentiable function vt(x); discontinuous function vt(x); 1.4.14 The non-measurable Bellman function; 1.4.15 No one strategy is uniformly -optimal; 1.4.16 Semi-continuous model; 2. Homogeneous Infinite-Horizon Models: Expected Total Loss; 2.1 Homogeneous Non-discounted Model; 2.2 Examples; 2.2.1 Mixed Strategies; 2.2.2 Multiple solutions to the optimality equation; 2.2.3 Finite model: multiple solutions to the optimality equation; conserving but not equalizing strategy | ||
500 | |a 2.2.4 The single conserving strategy is not equalizing and not optimal2.2.5 When strategy iteration is not successful; 2.2.6 When value iteration is not successful; 2.2.7 When value iteration is not successful: positive model I; 2.2.8 When value iteration is not successful: positive model II; 2.2.9 Value iteration and stability in optimal stopping problems; 2.2.10 A non-equalizing strategy is uniformly optimal; 2.2.11 A stationary uniformly -optimal selector does not exist (positive model); 2.2.12 A stationary uniformly -optimal selector does not exist (negative model) | ||
500 | |a 2.2.13 Finite-action negative model where a stationary uniformly -optimal selector does not exist2.2.14 Nearly uniformly optimal selectors in negative models; 2.2.15 Semi-continuous models and the blackmailer's dilemma; 2.2.16 Not a semi-continuous model; 2.2.17 The Bellman function is non-measurable and no one strategy is uniformly -optimal; 2.2.18 A randomized strategy is better than any selector (finite action space); 2.2.19 The fluid approximation does not work; 2.2.20 The fluid approximation: refined model; 2.2.21 Occupation measures: phantom solutions | ||
500 | |a 2.2.22 Occupation measures in transient models2.2.23 Occupation measures and duality; 2.2.24 Occupation measures: compactness; 2.2.25 The bold strategy in gambling is not optimal (house limit); 2.2.26 The bold strategy in gambling is not optimal (inflation); 2.2.27 Search strategy for a moving target; 2.2.28 The three-way duel ("Truel"); 3. Homogeneous Infinite-Horizon Models: Discounted Loss; 3.1 Preliminaries; 3.2 Examples; 3.2.1 Phantom solutions of the optimality equation; 3.2.2 When value iteration is not successful: positive model | ||
500 | |a This invaluable book provides approximately eighty examples illustrating the theory of controlled discrete-time Markov processes. Except for applications of the theory to real-life problems like stock exchange, queues, gambling, optimal search etc, the main attention is paid to counter-intuitive, unexpected properties of optimization problems. Such examples illustrate the importance of conditions imposed in the theorems on Markov Decision Processes. Many of the examples are based upon examples published earlier in journal articles or textbooks while several other examples are new. The aim was | ||
650 | 7 | |a MATHEMATICS / Probability & Statistics / Stochastic Processes |2 bisacsh | |
650 | 7 | |a Markov processes |2 fast | |
650 | 4 | |a Markov processes | |
650 | 0 | 7 | |a Markov-Entscheidungsprozess |0 (DE-588)4168927-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4144384-6 |a Beispielsammlung |2 gnd-content | |
689 | 0 | 0 | |a Markov-Entscheidungsprozess |0 (DE-588)4168927-6 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=545467 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028517703 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=545467 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=545467 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175496597995520 |
---|---|
any_adam_object | |
author | Piunovskiy, A. B. |
author_facet | Piunovskiy, A. B. |
author_role | aut |
author_sort | Piunovskiy, A. B. |
author_variant | a b p ab abp |
building | Verbundindex |
bvnumber | BV043093511 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)830162389 (DE-599)BVBBV043093511 |
dewey-full | 519.233 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.233 |
dewey-search | 519.233 |
dewey-sort | 3519.233 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05590nmm a2200529zc 4500</leader><controlfield tag="001">BV043093511</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848167946</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-84816-794-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848167940</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-84816-794-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)830162389</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043093511</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.233</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Piunovskiy, A. B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Examples in Markov Decision Processes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Company</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (308 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Imperial College Press optimization series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.2.3 A non-optimal strategy for which v x solves the optimality equation</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface; 1. Finite-Horizon Models; 1.1 Preliminaries; 1.2 Model Description; 1.3 Dynamic Programming Approach; 1.4 Examples; 1.4.1 Non-transitivity of the correlation; 1.4.2 The more frequently used control is not better; 1.4.3 Voting; 1.4.4 The secretary problem; 1.4.5 Constrained optimization; 1.4.6 Equivalent Markov selectors in non-atomic MDPs; 1.4.7 Strongly equivalent Markov selectors in nonatomic MDPs; 1.4.8 Stock exchange; 1.4.9 Markov or non-Markov strategy? Randomized or not? When is the Bellman principle violated?; 1.4.10 Uniformly optimal, but not optimal strategy</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1.4.11 Martingales and the Bellman principle1.4.12 Conventions on expectation and infinities; 1.4.13 Nowhere-differentiable function vt(x); discontinuous function vt(x); 1.4.14 The non-measurable Bellman function; 1.4.15 No one strategy is uniformly -optimal; 1.4.16 Semi-continuous model; 2. Homogeneous Infinite-Horizon Models: Expected Total Loss; 2.1 Homogeneous Non-discounted Model; 2.2 Examples; 2.2.1 Mixed Strategies; 2.2.2 Multiple solutions to the optimality equation; 2.2.3 Finite model: multiple solutions to the optimality equation; conserving but not equalizing strategy</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.2.4 The single conserving strategy is not equalizing and not optimal2.2.5 When strategy iteration is not successful; 2.2.6 When value iteration is not successful; 2.2.7 When value iteration is not successful: positive model I; 2.2.8 When value iteration is not successful: positive model II; 2.2.9 Value iteration and stability in optimal stopping problems; 2.2.10 A non-equalizing strategy is uniformly optimal; 2.2.11 A stationary uniformly -optimal selector does not exist (positive model); 2.2.12 A stationary uniformly -optimal selector does not exist (negative model)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.2.13 Finite-action negative model where a stationary uniformly -optimal selector does not exist2.2.14 Nearly uniformly optimal selectors in negative models; 2.2.15 Semi-continuous models and the blackmailer's dilemma; 2.2.16 Not a semi-continuous model; 2.2.17 The Bellman function is non-measurable and no one strategy is uniformly -optimal; 2.2.18 A randomized strategy is better than any selector (finite action space); 2.2.19 The fluid approximation does not work; 2.2.20 The fluid approximation: refined model; 2.2.21 Occupation measures: phantom solutions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.2.22 Occupation measures in transient models2.2.23 Occupation measures and duality; 2.2.24 Occupation measures: compactness; 2.2.25 The bold strategy in gambling is not optimal (house limit); 2.2.26 The bold strategy in gambling is not optimal (inflation); 2.2.27 Search strategy for a moving target; 2.2.28 The three-way duel ("Truel"); 3. Homogeneous Infinite-Horizon Models: Discounted Loss; 3.1 Preliminaries; 3.2 Examples; 3.2.1 Phantom solutions of the optimality equation; 3.2.2 When value iteration is not successful: positive model</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This invaluable book provides approximately eighty examples illustrating the theory of controlled discrete-time Markov processes. Except for applications of the theory to real-life problems like stock exchange, queues, gambling, optimal search etc, the main attention is paid to counter-intuitive, unexpected properties of optimization problems. Such examples illustrate the importance of conditions imposed in the theorems on Markov Decision Processes. Many of the examples are based upon examples published earlier in journal articles or textbooks while several other examples are new. The aim was</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Probability & Statistics / Stochastic Processes</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Markov processes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Entscheidungsprozess</subfield><subfield code="0">(DE-588)4168927-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4144384-6</subfield><subfield code="a">Beispielsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov-Entscheidungsprozess</subfield><subfield code="0">(DE-588)4168927-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=545467</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028517703</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=545467</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=545467</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4144384-6 Beispielsammlung gnd-content |
genre_facet | Beispielsammlung |
id | DE-604.BV043093511 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:13Z |
institution | BVB |
isbn | 1848167946 9781848167940 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028517703 |
oclc_num | 830162389 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (308 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific Publishing Company |
record_format | marc |
series2 | Imperial College Press optimization series |
spelling | Piunovskiy, A. B. Verfasser aut Examples in Markov Decision Processes Singapore World Scientific Publishing Company 2012 1 Online-Ressource (308 pages) txt rdacontent c rdamedia cr rdacarrier Imperial College Press optimization series 3.2.3 A non-optimal strategy for which v x solves the optimality equation Preface; 1. Finite-Horizon Models; 1.1 Preliminaries; 1.2 Model Description; 1.3 Dynamic Programming Approach; 1.4 Examples; 1.4.1 Non-transitivity of the correlation; 1.4.2 The more frequently used control is not better; 1.4.3 Voting; 1.4.4 The secretary problem; 1.4.5 Constrained optimization; 1.4.6 Equivalent Markov selectors in non-atomic MDPs; 1.4.7 Strongly equivalent Markov selectors in nonatomic MDPs; 1.4.8 Stock exchange; 1.4.9 Markov or non-Markov strategy? Randomized or not? When is the Bellman principle violated?; 1.4.10 Uniformly optimal, but not optimal strategy 1.4.11 Martingales and the Bellman principle1.4.12 Conventions on expectation and infinities; 1.4.13 Nowhere-differentiable function vt(x); discontinuous function vt(x); 1.4.14 The non-measurable Bellman function; 1.4.15 No one strategy is uniformly -optimal; 1.4.16 Semi-continuous model; 2. Homogeneous Infinite-Horizon Models: Expected Total Loss; 2.1 Homogeneous Non-discounted Model; 2.2 Examples; 2.2.1 Mixed Strategies; 2.2.2 Multiple solutions to the optimality equation; 2.2.3 Finite model: multiple solutions to the optimality equation; conserving but not equalizing strategy 2.2.4 The single conserving strategy is not equalizing and not optimal2.2.5 When strategy iteration is not successful; 2.2.6 When value iteration is not successful; 2.2.7 When value iteration is not successful: positive model I; 2.2.8 When value iteration is not successful: positive model II; 2.2.9 Value iteration and stability in optimal stopping problems; 2.2.10 A non-equalizing strategy is uniformly optimal; 2.2.11 A stationary uniformly -optimal selector does not exist (positive model); 2.2.12 A stationary uniformly -optimal selector does not exist (negative model) 2.2.13 Finite-action negative model where a stationary uniformly -optimal selector does not exist2.2.14 Nearly uniformly optimal selectors in negative models; 2.2.15 Semi-continuous models and the blackmailer's dilemma; 2.2.16 Not a semi-continuous model; 2.2.17 The Bellman function is non-measurable and no one strategy is uniformly -optimal; 2.2.18 A randomized strategy is better than any selector (finite action space); 2.2.19 The fluid approximation does not work; 2.2.20 The fluid approximation: refined model; 2.2.21 Occupation measures: phantom solutions 2.2.22 Occupation measures in transient models2.2.23 Occupation measures and duality; 2.2.24 Occupation measures: compactness; 2.2.25 The bold strategy in gambling is not optimal (house limit); 2.2.26 The bold strategy in gambling is not optimal (inflation); 2.2.27 Search strategy for a moving target; 2.2.28 The three-way duel ("Truel"); 3. Homogeneous Infinite-Horizon Models: Discounted Loss; 3.1 Preliminaries; 3.2 Examples; 3.2.1 Phantom solutions of the optimality equation; 3.2.2 When value iteration is not successful: positive model This invaluable book provides approximately eighty examples illustrating the theory of controlled discrete-time Markov processes. Except for applications of the theory to real-life problems like stock exchange, queues, gambling, optimal search etc, the main attention is paid to counter-intuitive, unexpected properties of optimization problems. Such examples illustrate the importance of conditions imposed in the theorems on Markov Decision Processes. Many of the examples are based upon examples published earlier in journal articles or textbooks while several other examples are new. The aim was MATHEMATICS / Probability & Statistics / Stochastic Processes bisacsh Markov processes fast Markov processes Markov-Entscheidungsprozess (DE-588)4168927-6 gnd rswk-swf 1\p (DE-588)4144384-6 Beispielsammlung gnd-content Markov-Entscheidungsprozess (DE-588)4168927-6 s 2\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=545467 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Piunovskiy, A. B. Examples in Markov Decision Processes MATHEMATICS / Probability & Statistics / Stochastic Processes bisacsh Markov processes fast Markov processes Markov-Entscheidungsprozess (DE-588)4168927-6 gnd |
subject_GND | (DE-588)4168927-6 (DE-588)4144384-6 |
title | Examples in Markov Decision Processes |
title_auth | Examples in Markov Decision Processes |
title_exact_search | Examples in Markov Decision Processes |
title_full | Examples in Markov Decision Processes |
title_fullStr | Examples in Markov Decision Processes |
title_full_unstemmed | Examples in Markov Decision Processes |
title_short | Examples in Markov Decision Processes |
title_sort | examples in markov decision processes |
topic | MATHEMATICS / Probability & Statistics / Stochastic Processes bisacsh Markov processes fast Markov processes Markov-Entscheidungsprozess (DE-588)4168927-6 gnd |
topic_facet | MATHEMATICS / Probability & Statistics / Stochastic Processes Markov processes Markov-Entscheidungsprozess Beispielsammlung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=545467 |
work_keys_str_mv | AT piunovskiyab examplesinmarkovdecisionprocesses |