The foundations of mathematics in the theory of sets:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2000
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
v. 82 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 415-420) and index Preliminaries -- - Idea of foundations for mathematics -- - Simple arithmetic -- - Basic set theory -- - Semantics, ontology, and logic -- - Principal axioms and definitions of set theory -- - Cantorian set theory -- - Cantorian finitism -- - Axiomatic method -- - Axiomatic set theory -- - Euclidean set theory -- - Euclidean finitism -- - Euclidean theory of cardinality -- - Euclidean theory of simply infinite systems -- - Euclidean set theory from the cantorian standpoint -- - Envoi |
Beschreibung: | 1 Online-Ressource (xx, 424 p.) |
ISBN: | 0521770343 1107089395 9780521770347 9781107089396 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043091381 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2000 |||| o||u| ||||||eng d | ||
020 | |a 0521770343 |9 0-521-77034-3 | ||
020 | |a 1107089395 |c electronic bk. |9 1-107-08939-5 | ||
020 | |a 9780521770347 |9 978-0-521-77034-7 | ||
020 | |a 9781107089396 |c electronic bk. |9 978-1-107-08939-6 | ||
035 | |a (OCoLC)852898494 | ||
035 | |a (DE-599)BVBBV043091381 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 511.3/22 |2 22 | |
100 | 1 | |a Mayberry, John P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The foundations of mathematics in the theory of sets |c J.P. Mayberry |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2000 | |
300 | |a 1 Online-Ressource (xx, 424 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v v. 82 | |
500 | |a Includes bibliographical references (p. 415-420) and index | ||
500 | |a Preliminaries -- - Idea of foundations for mathematics -- - Simple arithmetic -- - Basic set theory -- - Semantics, ontology, and logic -- - Principal axioms and definitions of set theory -- - Cantorian set theory -- - Cantorian finitism -- - Axiomatic method -- - Axiomatic set theory -- - Euclidean set theory -- - Euclidean finitism -- - Euclidean theory of cardinality -- - Euclidean theory of simply infinite systems -- - Euclidean set theory from the cantorian standpoint -- - Envoi | ||
650 | 4 | |a Ensembles, Théorie des | |
650 | 7 | |a Verzamelingen (wiskunde) |2 gtt | |
650 | 7 | |a MATHEMATICS / Set Theory |2 bisacsh | |
650 | 7 | |a Set theory |2 fast | |
650 | 4 | |a Set theory | |
650 | 0 | 7 | |a Mengenlehre |0 (DE-588)4074715-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mengenlehre |0 (DE-588)4074715-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569379 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028515573 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569379 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569379 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175492665835520 |
---|---|
any_adam_object | |
author | Mayberry, John P. |
author_facet | Mayberry, John P. |
author_role | aut |
author_sort | Mayberry, John P. |
author_variant | j p m jp jpm |
building | Verbundindex |
bvnumber | BV043091381 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)852898494 (DE-599)BVBBV043091381 |
dewey-full | 511.3/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 |
dewey-search | 511.3/22 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02516nmm a2200493zcb4500</leader><controlfield tag="001">BV043091381</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521770343</subfield><subfield code="9">0-521-77034-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107089395</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-08939-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521770347</subfield><subfield code="9">978-0-521-77034-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107089396</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-08939-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852898494</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043091381</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/22</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mayberry, John P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The foundations of mathematics in the theory of sets</subfield><subfield code="c">J.P. Mayberry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xx, 424 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">v. 82</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 415-420) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preliminaries -- - Idea of foundations for mathematics -- - Simple arithmetic -- - Basic set theory -- - Semantics, ontology, and logic -- - Principal axioms and definitions of set theory -- - Cantorian set theory -- - Cantorian finitism -- - Axiomatic method -- - Axiomatic set theory -- - Euclidean set theory -- - Euclidean finitism -- - Euclidean theory of cardinality -- - Euclidean theory of simply infinite systems -- - Euclidean set theory from the cantorian standpoint -- - Envoi</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensembles, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Verzamelingen (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Set Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Set theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569379</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028515573</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569379</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569379</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043091381 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:09Z |
institution | BVB |
isbn | 0521770343 1107089395 9780521770347 9781107089396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028515573 |
oclc_num | 852898494 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xx, 424 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Mayberry, John P. Verfasser aut The foundations of mathematics in the theory of sets J.P. Mayberry Cambridge Cambridge University Press 2000 1 Online-Ressource (xx, 424 p.) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications v. 82 Includes bibliographical references (p. 415-420) and index Preliminaries -- - Idea of foundations for mathematics -- - Simple arithmetic -- - Basic set theory -- - Semantics, ontology, and logic -- - Principal axioms and definitions of set theory -- - Cantorian set theory -- - Cantorian finitism -- - Axiomatic method -- - Axiomatic set theory -- - Euclidean set theory -- - Euclidean finitism -- - Euclidean theory of cardinality -- - Euclidean theory of simply infinite systems -- - Euclidean set theory from the cantorian standpoint -- - Envoi Ensembles, Théorie des Verzamelingen (wiskunde) gtt MATHEMATICS / Set Theory bisacsh Set theory fast Set theory Mengenlehre (DE-588)4074715-3 gnd rswk-swf Mengenlehre (DE-588)4074715-3 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569379 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mayberry, John P. The foundations of mathematics in the theory of sets Ensembles, Théorie des Verzamelingen (wiskunde) gtt MATHEMATICS / Set Theory bisacsh Set theory fast Set theory Mengenlehre (DE-588)4074715-3 gnd |
subject_GND | (DE-588)4074715-3 |
title | The foundations of mathematics in the theory of sets |
title_auth | The foundations of mathematics in the theory of sets |
title_exact_search | The foundations of mathematics in the theory of sets |
title_full | The foundations of mathematics in the theory of sets J.P. Mayberry |
title_fullStr | The foundations of mathematics in the theory of sets J.P. Mayberry |
title_full_unstemmed | The foundations of mathematics in the theory of sets J.P. Mayberry |
title_short | The foundations of mathematics in the theory of sets |
title_sort | the foundations of mathematics in the theory of sets |
topic | Ensembles, Théorie des Verzamelingen (wiskunde) gtt MATHEMATICS / Set Theory bisacsh Set theory fast Set theory Mengenlehre (DE-588)4074715-3 gnd |
topic_facet | Ensembles, Théorie des Verzamelingen (wiskunde) MATHEMATICS / Set Theory Set theory Mengenlehre |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569379 |
work_keys_str_mv | AT mayberryjohnp thefoundationsofmathematicsinthetheoryofsets |