Lectures on Finsler geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
©2001
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 299-304) and index In 1854, B. Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P. Finsler studied the variation problem in regular metric spaces. Around 1926, L. Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D. Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world. Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory |
Beschreibung: | 1 Online-Ressource (xiv, 307 pages) |
ISBN: | 1281960659 9781281960658 9789810245306 9789812811622 9810245300 9812811621 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043090962 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2001 |||| o||u| ||||||eng d | ||
020 | |a 1281960659 |9 1-281-96065-9 | ||
020 | |a 9781281960658 |9 978-1-281-96065-8 | ||
020 | |a 9789810245306 |9 978-981-02-4530-6 | ||
020 | |a 9789812811622 |c electronic bk. |9 978-981-281-162-2 | ||
020 | |a 9810245300 |9 981-02-4530-0 | ||
020 | |a 9812811621 |c electronic bk. |9 981-281-162-1 | ||
035 | |a (OCoLC)261336333 | ||
035 | |a (DE-599)BVBBV043090962 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 516.3/73 |2 22 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Shen, Zhongmin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on Finsler geometry |c Zhongmin Shen |
264 | 1 | |a Singapore |b World Scientific |c ©2001 | |
300 | |a 1 Online-Ressource (xiv, 307 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 299-304) and index | ||
500 | |a In 1854, B. Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P. Finsler studied the variation problem in regular metric spaces. Around 1926, L. Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D. Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world. Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory | ||
650 | 4 | |a Finsler, Espaces de | |
650 | 4 | |a Géométrie différentielle | |
650 | 7 | |a MATHEMATICS / Geometry / Analytic |2 bisacsh | |
650 | 7 | |a Finsler spaces |2 fast | |
650 | 7 | |a Geometry, Differential |2 fast | |
650 | 7 | |a Finsler, Espaces de |2 rvm | |
650 | 7 | |a Géométrie différentielle |2 rvm | |
650 | 4 | |a Finsler spaces | |
650 | 4 | |a Geometry, Differential | |
650 | 0 | 7 | |a Finsler-Raum |0 (DE-588)4154449-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Finsler-Raum |0 (DE-588)4154449-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 981-02-4531-9 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235868 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028515154 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235868 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235868 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175491880452096 |
---|---|
any_adam_object | |
author | Shen, Zhongmin |
author_facet | Shen, Zhongmin |
author_role | aut |
author_sort | Shen, Zhongmin |
author_variant | z s zs |
building | Verbundindex |
bvnumber | BV043090962 |
classification_rvk | SK 370 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)261336333 (DE-599)BVBBV043090962 |
dewey-full | 516.3/73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/73 |
dewey-search | 516.3/73 |
dewey-sort | 3516.3 273 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03623nmm a2200577zc 4500</leader><controlfield tag="001">BV043090962</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281960659</subfield><subfield code="9">1-281-96065-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281960658</subfield><subfield code="9">978-1-281-96065-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789810245306</subfield><subfield code="9">978-981-02-4530-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812811622</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-281-162-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810245300</subfield><subfield code="9">981-02-4530-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812811621</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-281-162-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)261336333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043090962</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/73</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shen, Zhongmin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on Finsler geometry</subfield><subfield code="c">Zhongmin Shen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">©2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 307 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 299-304) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In 1854, B. Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P. Finsler studied the variation problem in regular metric spaces. Around 1926, L. Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D. Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world. Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finsler, Espaces de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Géométrie différentielle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Analytic</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finsler spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Differential</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finsler, Espaces de</subfield><subfield code="2">rvm</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Géométrie différentielle</subfield><subfield code="2">rvm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finsler spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finsler-Raum</subfield><subfield code="0">(DE-588)4154449-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Finsler-Raum</subfield><subfield code="0">(DE-588)4154449-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">981-02-4531-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235868</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028515154</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235868</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235868</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043090962 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:08Z |
institution | BVB |
isbn | 1281960659 9781281960658 9789810245306 9789812811622 9810245300 9812811621 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028515154 |
oclc_num | 261336333 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiv, 307 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific |
record_format | marc |
spelling | Shen, Zhongmin Verfasser aut Lectures on Finsler geometry Zhongmin Shen Singapore World Scientific ©2001 1 Online-Ressource (xiv, 307 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 299-304) and index In 1854, B. Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P. Finsler studied the variation problem in regular metric spaces. Around 1926, L. Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D. Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world. Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory Finsler, Espaces de Géométrie différentielle MATHEMATICS / Geometry / Analytic bisacsh Finsler spaces fast Geometry, Differential fast Finsler, Espaces de rvm Géométrie différentielle rvm Finsler spaces Geometry, Differential Finsler-Raum (DE-588)4154449-3 gnd rswk-swf Finsler-Raum (DE-588)4154449-3 s 1\p DE-604 Erscheint auch als Druck-Ausgabe, Paperback 981-02-4531-9 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235868 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Shen, Zhongmin Lectures on Finsler geometry Finsler, Espaces de Géométrie différentielle MATHEMATICS / Geometry / Analytic bisacsh Finsler spaces fast Geometry, Differential fast Finsler, Espaces de rvm Géométrie différentielle rvm Finsler spaces Geometry, Differential Finsler-Raum (DE-588)4154449-3 gnd |
subject_GND | (DE-588)4154449-3 |
title | Lectures on Finsler geometry |
title_auth | Lectures on Finsler geometry |
title_exact_search | Lectures on Finsler geometry |
title_full | Lectures on Finsler geometry Zhongmin Shen |
title_fullStr | Lectures on Finsler geometry Zhongmin Shen |
title_full_unstemmed | Lectures on Finsler geometry Zhongmin Shen |
title_short | Lectures on Finsler geometry |
title_sort | lectures on finsler geometry |
topic | Finsler, Espaces de Géométrie différentielle MATHEMATICS / Geometry / Analytic bisacsh Finsler spaces fast Geometry, Differential fast Finsler, Espaces de rvm Géométrie différentielle rvm Finsler spaces Geometry, Differential Finsler-Raum (DE-588)4154449-3 gnd |
topic_facet | Finsler, Espaces de Géométrie différentielle MATHEMATICS / Geometry / Analytic Finsler spaces Geometry, Differential Finsler-Raum |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235868 |
work_keys_str_mv | AT shenzhongmin lecturesonfinslergeometry |