Fixed point theorems and their applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2013
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 219-227) and index Introduction -- 1. Early fixed point theorems. 1.1. The Picard-Banach theorem. 1.2. Vector fields on spheres. 1.3. Proof of the Brouwer theorem and corollaries. 1.4. Fixed point theorems for groups of affine maps of [symbol] -- 2. Fixed point theorems in analysis. 2.1. The Schaüder-Tychonoff theorem. 2.2. Applications of the Schaüder-Tychonoff theorem. 2.3. The theorems of Hahn, Kakutani and Markov-Kakutani. 2.4. Amenable groups -- 3. The Lefschetz fixed point theorem. 3.1. The Lefschetz theorem for compact polyhedra. 3.2. The Lefschetz theorem for a compact manifold. 3.3. Proof of the Lefschetz theorem. 3.4. Some applications. 3.5. The Atiyah-Bott fixed point theorem -- 4. Fixed point theorems in geometry. 4.1. Some generalities on Riemannian manifolds. 4.2. Hadamard manifolds and Cartan's theorem. 4.3. Fixed point theorems for compact manifolds -- 5. Fixed points of volume preserving maps. 5.1. The Poincaré recurrence theorem. 5.2. Symplectic geometry and its fixed point theorems. 5.3. Poincaré's last geometric theorem. 5.4. Automorphisms of Lie algebras. 5.5. Hyperbolic automorphisms of a manifold. 5.6. The Lefschetz zeta function -- 6. Borel's fixed point theorem in algebraic groups. 6.1. Complete varieties and Borel's theorem. 6.2. The projective and Grassmann spaces. 6.3. Projective varieties. 6.4. Consequences of Borel's fixed point. 6.5. Two conjugacy theorems for real linear Lie groups -- 7. Miscellaneous fixed point theorems. 7.1. Applications to number theory. 7.2. Fixed points in group theory. 7.3. A fixed point theorem in complex analysis -- 8. A fixed point theorem in set theory -- Afterword This is the only book that deals comprehensively with fixed point theorems throughout mathematics. Their importance is due, as the book demonstrates, to their wide applicability. Beyond the first chapter, each of the other seven can be read independently of the others so the reader has much flexibility to follow his/her own interests. The book is written for graduate students and professional mathematicians and could be of interest to physicists, economists and engineers |
Beschreibung: | 1 Online-Ressource (xi, 234 p.) |
ISBN: | 1299955363 9781299955363 9789814458917 9789814458924 9814458910 9814458929 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043090578 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2013 |||| o||u| ||||||eng d | ||
020 | |a 1299955363 |9 1-299-95536-3 | ||
020 | |a 9781299955363 |9 978-1-299-95536-3 | ||
020 | |a 9789814458917 |9 978-981-4458-91-7 | ||
020 | |a 9789814458924 |c electronic bk. |9 978-981-4458-92-4 | ||
020 | |a 9814458910 |9 981-4458-91-0 | ||
020 | |a 9814458929 |c electronic bk. |9 981-4458-92-9 | ||
035 | |a (OCoLC)874921206 | ||
035 | |a (DE-599)BVBBV043090578 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515.7248 |2 22 | |
100 | 1 | |a Farmakis, Ioannis |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fixed point theorems and their applications |c Ioannis Farmakis, Martin Moskowitz |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2013 | |
300 | |a 1 Online-Ressource (xi, 234 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 219-227) and index | ||
500 | |a Introduction -- 1. Early fixed point theorems. 1.1. The Picard-Banach theorem. 1.2. Vector fields on spheres. 1.3. Proof of the Brouwer theorem and corollaries. 1.4. Fixed point theorems for groups of affine maps of [symbol] -- 2. Fixed point theorems in analysis. 2.1. The Schaüder-Tychonoff theorem. 2.2. Applications of the Schaüder-Tychonoff theorem. 2.3. The theorems of Hahn, Kakutani and Markov-Kakutani. 2.4. Amenable groups -- 3. The Lefschetz fixed point theorem. 3.1. The Lefschetz theorem for compact polyhedra. 3.2. The Lefschetz theorem for a compact manifold. 3.3. Proof of the Lefschetz theorem. 3.4. Some applications. 3.5. The Atiyah-Bott fixed point theorem -- 4. Fixed point theorems in geometry. 4.1. Some generalities on Riemannian manifolds. 4.2. Hadamard manifolds and Cartan's theorem. 4.3. Fixed point theorems for compact manifolds -- 5. Fixed points of volume preserving maps. 5.1. The Poincaré recurrence theorem. 5.2. Symplectic geometry and its fixed point theorems. 5.3. Poincaré's last geometric theorem. 5.4. Automorphisms of Lie algebras. 5.5. Hyperbolic automorphisms of a manifold. 5.6. The Lefschetz zeta function -- 6. Borel's fixed point theorem in algebraic groups. 6.1. Complete varieties and Borel's theorem. 6.2. The projective and Grassmann spaces. 6.3. Projective varieties. 6.4. Consequences of Borel's fixed point. 6.5. Two conjugacy theorems for real linear Lie groups -- 7. Miscellaneous fixed point theorems. 7.1. Applications to number theory. 7.2. Fixed points in group theory. 7.3. A fixed point theorem in complex analysis -- 8. A fixed point theorem in set theory -- Afterword | ||
500 | |a This is the only book that deals comprehensively with fixed point theorems throughout mathematics. Their importance is due, as the book demonstrates, to their wide applicability. Beyond the first chapter, each of the other seven can be read independently of the others so the reader has much flexibility to follow his/her own interests. The book is written for graduate students and professional mathematicians and could be of interest to physicists, economists and engineers | ||
650 | 7 | |a Fixed point theory |2 fast | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 4 | |a Fixed point theory | |
650 | 0 | 7 | |a Fixpunkttheorie |0 (DE-588)4293945-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fixpunkttheorie |0 (DE-588)4293945-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Moskowitz, Martin A. |e Sonstige |4 oth | |
710 | 2 | |a World Scientific (Firm) |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=645968 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028514769 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=645968 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=645968 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175491143303168 |
---|---|
any_adam_object | |
author | Farmakis, Ioannis |
author_facet | Farmakis, Ioannis |
author_role | aut |
author_sort | Farmakis, Ioannis |
author_variant | i f if |
building | Verbundindex |
bvnumber | BV043090578 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)874921206 (DE-599)BVBBV043090578 |
dewey-full | 515.7248 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7248 |
dewey-search | 515.7248 |
dewey-sort | 3515.7248 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04287nmm a2200529zc 4500</leader><controlfield tag="001">BV043090578</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299955363</subfield><subfield code="9">1-299-95536-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299955363</subfield><subfield code="9">978-1-299-95536-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814458917</subfield><subfield code="9">978-981-4458-91-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814458924</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4458-92-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814458910</subfield><subfield code="9">981-4458-91-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814458929</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4458-92-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)874921206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043090578</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7248</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Farmakis, Ioannis</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fixed point theorems and their applications</subfield><subfield code="c">Ioannis Farmakis, Martin Moskowitz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 234 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 219-227) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Introduction -- 1. Early fixed point theorems. 1.1. The Picard-Banach theorem. 1.2. Vector fields on spheres. 1.3. Proof of the Brouwer theorem and corollaries. 1.4. Fixed point theorems for groups of affine maps of [symbol] -- 2. Fixed point theorems in analysis. 2.1. The Schaüder-Tychonoff theorem. 2.2. Applications of the Schaüder-Tychonoff theorem. 2.3. The theorems of Hahn, Kakutani and Markov-Kakutani. 2.4. Amenable groups -- 3. The Lefschetz fixed point theorem. 3.1. The Lefschetz theorem for compact polyhedra. 3.2. The Lefschetz theorem for a compact manifold. 3.3. Proof of the Lefschetz theorem. 3.4. Some applications. 3.5. The Atiyah-Bott fixed point theorem -- 4. Fixed point theorems in geometry. 4.1. Some generalities on Riemannian manifolds. 4.2. Hadamard manifolds and Cartan's theorem. 4.3. Fixed point theorems for compact manifolds -- 5. Fixed points of volume preserving maps. 5.1. The Poincaré recurrence theorem. 5.2. Symplectic geometry and its fixed point theorems. 5.3. Poincaré's last geometric theorem. 5.4. Automorphisms of Lie algebras. 5.5. Hyperbolic automorphisms of a manifold. 5.6. The Lefschetz zeta function -- 6. Borel's fixed point theorem in algebraic groups. 6.1. Complete varieties and Borel's theorem. 6.2. The projective and Grassmann spaces. 6.3. Projective varieties. 6.4. Consequences of Borel's fixed point. 6.5. Two conjugacy theorems for real linear Lie groups -- 7. Miscellaneous fixed point theorems. 7.1. Applications to number theory. 7.2. Fixed points in group theory. 7.3. A fixed point theorem in complex analysis -- 8. A fixed point theorem in set theory -- Afterword</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is the only book that deals comprehensively with fixed point theorems throughout mathematics. Their importance is due, as the book demonstrates, to their wide applicability. Beyond the first chapter, each of the other seven can be read independently of the others so the reader has much flexibility to follow his/her own interests. The book is written for graduate students and professional mathematicians and could be of interest to physicists, economists and engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fixed point theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed point theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fixpunkttheorie</subfield><subfield code="0">(DE-588)4293945-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fixpunkttheorie</subfield><subfield code="0">(DE-588)4293945-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moskowitz, Martin A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=645968</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028514769</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=645968</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=645968</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043090578 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:08Z |
institution | BVB |
isbn | 1299955363 9781299955363 9789814458917 9789814458924 9814458910 9814458929 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028514769 |
oclc_num | 874921206 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xi, 234 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Farmakis, Ioannis Verfasser aut Fixed point theorems and their applications Ioannis Farmakis, Martin Moskowitz Singapore World Scientific Pub. Co. c2013 1 Online-Ressource (xi, 234 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (p. 219-227) and index Introduction -- 1. Early fixed point theorems. 1.1. The Picard-Banach theorem. 1.2. Vector fields on spheres. 1.3. Proof of the Brouwer theorem and corollaries. 1.4. Fixed point theorems for groups of affine maps of [symbol] -- 2. Fixed point theorems in analysis. 2.1. The Schaüder-Tychonoff theorem. 2.2. Applications of the Schaüder-Tychonoff theorem. 2.3. The theorems of Hahn, Kakutani and Markov-Kakutani. 2.4. Amenable groups -- 3. The Lefschetz fixed point theorem. 3.1. The Lefschetz theorem for compact polyhedra. 3.2. The Lefschetz theorem for a compact manifold. 3.3. Proof of the Lefschetz theorem. 3.4. Some applications. 3.5. The Atiyah-Bott fixed point theorem -- 4. Fixed point theorems in geometry. 4.1. Some generalities on Riemannian manifolds. 4.2. Hadamard manifolds and Cartan's theorem. 4.3. Fixed point theorems for compact manifolds -- 5. Fixed points of volume preserving maps. 5.1. The Poincaré recurrence theorem. 5.2. Symplectic geometry and its fixed point theorems. 5.3. Poincaré's last geometric theorem. 5.4. Automorphisms of Lie algebras. 5.5. Hyperbolic automorphisms of a manifold. 5.6. The Lefschetz zeta function -- 6. Borel's fixed point theorem in algebraic groups. 6.1. Complete varieties and Borel's theorem. 6.2. The projective and Grassmann spaces. 6.3. Projective varieties. 6.4. Consequences of Borel's fixed point. 6.5. Two conjugacy theorems for real linear Lie groups -- 7. Miscellaneous fixed point theorems. 7.1. Applications to number theory. 7.2. Fixed points in group theory. 7.3. A fixed point theorem in complex analysis -- 8. A fixed point theorem in set theory -- Afterword This is the only book that deals comprehensively with fixed point theorems throughout mathematics. Their importance is due, as the book demonstrates, to their wide applicability. Beyond the first chapter, each of the other seven can be read independently of the others so the reader has much flexibility to follow his/her own interests. The book is written for graduate students and professional mathematicians and could be of interest to physicists, economists and engineers Fixed point theory fast MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Fixed point theory Fixpunkttheorie (DE-588)4293945-8 gnd rswk-swf Fixpunkttheorie (DE-588)4293945-8 s 1\p DE-604 Moskowitz, Martin A. Sonstige oth World Scientific (Firm) Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=645968 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Farmakis, Ioannis Fixed point theorems and their applications Fixed point theory fast MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Fixed point theory Fixpunkttheorie (DE-588)4293945-8 gnd |
subject_GND | (DE-588)4293945-8 |
title | Fixed point theorems and their applications |
title_auth | Fixed point theorems and their applications |
title_exact_search | Fixed point theorems and their applications |
title_full | Fixed point theorems and their applications Ioannis Farmakis, Martin Moskowitz |
title_fullStr | Fixed point theorems and their applications Ioannis Farmakis, Martin Moskowitz |
title_full_unstemmed | Fixed point theorems and their applications Ioannis Farmakis, Martin Moskowitz |
title_short | Fixed point theorems and their applications |
title_sort | fixed point theorems and their applications |
topic | Fixed point theory fast MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Fixed point theory Fixpunkttheorie (DE-588)4293945-8 gnd |
topic_facet | Fixed point theory MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Fixpunkttheorie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=645968 |
work_keys_str_mv | AT farmakisioannis fixedpointtheoremsandtheirapplications AT moskowitzmartina fixedpointtheoremsandtheirapplications AT worldscientificfirm fixedpointtheoremsandtheirapplications |