Introduction to gauge integrals:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
© 2001
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 149-153) and index 1. Introduction to the gauge or Henstock-Kurzweil integral -- 2. Basic properties of the gauge integral -- 3. Henstock's lemma and improper integrals -- 4. The gauge integral over unbounded intervals -- 5. Convergence theorems -- 6. Integration over more general sets: Lebesgue measure -- 7. The space of gauge integrable functions -- 8. Multiple integrals and Fubini's theorem -- 9. The McShane integral. 9.1. Definition and basic properties. 9.2. Convergence theorems. 9.3. Integrability of products and integration by parts. 9.4. More general convergence theorems. 9.5. The space of McShane integrable functions. 9.6. Multiple integrals and Fubini's theorem -- 10. McShane integrability is equivalent to absolute Henstock-Kurzweil integrability This book presents the Henstock/Kurzweil integral and the McShane integral. These two integrals are obtained by changing slightly the definition of the Riemann integral. These variations lead to integrals which are much more powerful than the Riemann integral. The Henstock/Kurzweil integral is an unconditional integral for which the fundamental theorem of calculus holds in full generality, while the McShane integral is equivalent to the Lebesgue integral in Euclidean spaces. A basic knowledge of introductory real analysis is required of the reader, who should be familiar with the fundamental properties of the real numbers, convergence, series, differentiation, continuity, etc |
Beschreibung: | 1 Online-Ressource (x, 157 pages) |
ISBN: | 1281956317 9781281956316 9789810242398 9789812810656 9810242395 981281065X |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043090407 | ||
003 | DE-604 | ||
005 | 20180222 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2001 |||| o||u| ||||||eng d | ||
020 | |a 1281956317 |9 1-281-95631-7 | ||
020 | |a 9781281956316 |9 978-1-281-95631-6 | ||
020 | |a 9789810242398 |9 978-981-02-4239-8 | ||
020 | |a 9789812810656 |c electronic bk. |9 978-981-281-065-6 | ||
020 | |a 9810242395 |c alk. paper |9 981-02-4239-5 | ||
020 | |a 981281065X |c electronic bk. |9 981-281-065-X | ||
035 | |a (OCoLC)268993106 | ||
035 | |a (DE-599)BVBBV043090407 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.43 |2 22 | |
100 | 1 | |a Swartz, Charles |d 1938- |e Verfasser |0 (DE-588)131653601 |4 aut | |
245 | 1 | 0 | |a Introduction to gauge integrals |c Charles Swartz |
246 | 1 | 3 | |a Gauge integrals |
264 | 1 | |a Singapore |b World Scientific |c © 2001 | |
300 | |a 1 Online-Ressource (x, 157 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 149-153) and index | ||
500 | |a 1. Introduction to the gauge or Henstock-Kurzweil integral -- 2. Basic properties of the gauge integral -- 3. Henstock's lemma and improper integrals -- 4. The gauge integral over unbounded intervals -- 5. Convergence theorems -- 6. Integration over more general sets: Lebesgue measure -- 7. The space of gauge integrable functions -- 8. Multiple integrals and Fubini's theorem -- 9. The McShane integral. 9.1. Definition and basic properties. 9.2. Convergence theorems. 9.3. Integrability of products and integration by parts. 9.4. More general convergence theorems. 9.5. The space of McShane integrable functions. 9.6. Multiple integrals and Fubini's theorem -- 10. McShane integrability is equivalent to absolute Henstock-Kurzweil integrability | ||
500 | |a This book presents the Henstock/Kurzweil integral and the McShane integral. These two integrals are obtained by changing slightly the definition of the Riemann integral. These variations lead to integrals which are much more powerful than the Riemann integral. The Henstock/Kurzweil integral is an unconditional integral for which the fundamental theorem of calculus holds in full generality, while the McShane integral is equivalent to the Lebesgue integral in Euclidean spaces. A basic knowledge of introductory real analysis is required of the reader, who should be familiar with the fundamental properties of the real numbers, convergence, series, differentiation, continuity, etc | ||
650 | 4 | |a Kurzweil-Henstock, Intégrale de | |
650 | 4 | |a McShane, Intégrale de | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 7 | |a Henstock-Kurzweil integral |2 fast | |
650 | 7 | |a McShane integral |2 fast | |
650 | 4 | |a Henstock-Kurzweil integral | |
650 | 4 | |a McShane integral | |
650 | 0 | 7 | |a Henstock-Integration |0 (DE-588)4159545-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsches Integral |0 (DE-588)4049996-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsches Integral |0 (DE-588)4049996-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Henstock-Integration |0 (DE-588)4159545-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235917 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028514598 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235917 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235917 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175490843410432 |
---|---|
any_adam_object | |
author | Swartz, Charles 1938- |
author_GND | (DE-588)131653601 |
author_facet | Swartz, Charles 1938- |
author_role | aut |
author_sort | Swartz, Charles 1938- |
author_variant | c s cs |
building | Verbundindex |
bvnumber | BV043090407 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)268993106 (DE-599)BVBBV043090407 |
dewey-full | 515/.43 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.43 |
dewey-search | 515/.43 |
dewey-sort | 3515 243 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03965nmm a2200613zc 4500</leader><controlfield tag="001">BV043090407</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180222 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281956317</subfield><subfield code="9">1-281-95631-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281956316</subfield><subfield code="9">978-1-281-95631-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789810242398</subfield><subfield code="9">978-981-02-4239-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812810656</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-281-065-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810242395</subfield><subfield code="c">alk. paper</subfield><subfield code="9">981-02-4239-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981281065X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-281-065-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)268993106</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043090407</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.43</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Swartz, Charles</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131653601</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to gauge integrals</subfield><subfield code="c">Charles Swartz</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Gauge integrals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">© 2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 157 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 149-153) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction to the gauge or Henstock-Kurzweil integral -- 2. Basic properties of the gauge integral -- 3. Henstock's lemma and improper integrals -- 4. The gauge integral over unbounded intervals -- 5. Convergence theorems -- 6. Integration over more general sets: Lebesgue measure -- 7. The space of gauge integrable functions -- 8. Multiple integrals and Fubini's theorem -- 9. The McShane integral. 9.1. Definition and basic properties. 9.2. Convergence theorems. 9.3. Integrability of products and integration by parts. 9.4. More general convergence theorems. 9.5. The space of McShane integrable functions. 9.6. Multiple integrals and Fubini's theorem -- 10. McShane integrability is equivalent to absolute Henstock-Kurzweil integrability</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents the Henstock/Kurzweil integral and the McShane integral. These two integrals are obtained by changing slightly the definition of the Riemann integral. These variations lead to integrals which are much more powerful than the Riemann integral. The Henstock/Kurzweil integral is an unconditional integral for which the fundamental theorem of calculus holds in full generality, while the McShane integral is equivalent to the Lebesgue integral in Euclidean spaces. A basic knowledge of introductory real analysis is required of the reader, who should be familiar with the fundamental properties of the real numbers, convergence, series, differentiation, continuity, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kurzweil-Henstock, Intégrale de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">McShane, Intégrale de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Henstock-Kurzweil integral</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">McShane integral</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Henstock-Kurzweil integral</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">McShane integral</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Henstock-Integration</subfield><subfield code="0">(DE-588)4159545-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsches Integral</subfield><subfield code="0">(DE-588)4049996-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsches Integral</subfield><subfield code="0">(DE-588)4049996-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Henstock-Integration</subfield><subfield code="0">(DE-588)4159545-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235917</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028514598</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235917</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235917</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043090407 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:07Z |
institution | BVB |
isbn | 1281956317 9781281956316 9789810242398 9789812810656 9810242395 981281065X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028514598 |
oclc_num | 268993106 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (x, 157 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific |
record_format | marc |
spelling | Swartz, Charles 1938- Verfasser (DE-588)131653601 aut Introduction to gauge integrals Charles Swartz Gauge integrals Singapore World Scientific © 2001 1 Online-Ressource (x, 157 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 149-153) and index 1. Introduction to the gauge or Henstock-Kurzweil integral -- 2. Basic properties of the gauge integral -- 3. Henstock's lemma and improper integrals -- 4. The gauge integral over unbounded intervals -- 5. Convergence theorems -- 6. Integration over more general sets: Lebesgue measure -- 7. The space of gauge integrable functions -- 8. Multiple integrals and Fubini's theorem -- 9. The McShane integral. 9.1. Definition and basic properties. 9.2. Convergence theorems. 9.3. Integrability of products and integration by parts. 9.4. More general convergence theorems. 9.5. The space of McShane integrable functions. 9.6. Multiple integrals and Fubini's theorem -- 10. McShane integrability is equivalent to absolute Henstock-Kurzweil integrability This book presents the Henstock/Kurzweil integral and the McShane integral. These two integrals are obtained by changing slightly the definition of the Riemann integral. These variations lead to integrals which are much more powerful than the Riemann integral. The Henstock/Kurzweil integral is an unconditional integral for which the fundamental theorem of calculus holds in full generality, while the McShane integral is equivalent to the Lebesgue integral in Euclidean spaces. A basic knowledge of introductory real analysis is required of the reader, who should be familiar with the fundamental properties of the real numbers, convergence, series, differentiation, continuity, etc Kurzweil-Henstock, Intégrale de McShane, Intégrale de MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Henstock-Kurzweil integral fast McShane integral fast Henstock-Kurzweil integral McShane integral Henstock-Integration (DE-588)4159545-2 gnd rswk-swf Riemannsches Integral (DE-588)4049996-0 gnd rswk-swf Riemannsches Integral (DE-588)4049996-0 s 1\p DE-604 Henstock-Integration (DE-588)4159545-2 s 2\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235917 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Swartz, Charles 1938- Introduction to gauge integrals Kurzweil-Henstock, Intégrale de McShane, Intégrale de MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Henstock-Kurzweil integral fast McShane integral fast Henstock-Kurzweil integral McShane integral Henstock-Integration (DE-588)4159545-2 gnd Riemannsches Integral (DE-588)4049996-0 gnd |
subject_GND | (DE-588)4159545-2 (DE-588)4049996-0 |
title | Introduction to gauge integrals |
title_alt | Gauge integrals |
title_auth | Introduction to gauge integrals |
title_exact_search | Introduction to gauge integrals |
title_full | Introduction to gauge integrals Charles Swartz |
title_fullStr | Introduction to gauge integrals Charles Swartz |
title_full_unstemmed | Introduction to gauge integrals Charles Swartz |
title_short | Introduction to gauge integrals |
title_sort | introduction to gauge integrals |
topic | Kurzweil-Henstock, Intégrale de McShane, Intégrale de MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Henstock-Kurzweil integral fast McShane integral fast Henstock-Kurzweil integral McShane integral Henstock-Integration (DE-588)4159545-2 gnd Riemannsches Integral (DE-588)4049996-0 gnd |
topic_facet | Kurzweil-Henstock, Intégrale de McShane, Intégrale de MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Henstock-Kurzweil integral McShane integral Henstock-Integration Riemannsches Integral |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235917 |
work_keys_str_mv | AT swartzcharles introductiontogaugeintegrals AT swartzcharles gaugeintegrals |