Lectures on algebra, Volume I:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
c2006
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Lecture L6. Pause and refresh. 1. Summary of Lecture L1 on quadratic equations. 2. Summary of Lecture L2 on curves and surfaces. 3. Summary of Lecture L3 on tangents and polars. 4. Summary of Lecture L4 on varieties and models. 5. Summary of Lecture L5 on projective varieties. 6. Definitions and exercises Includes bibliographical references (p. 689-690) and index Lecture L1. Quadratic equations. 1. Word problems. 2. Sets and maps. 3. Groups and fields. 4. Rings and ideals. 5. Modules and vector spaces. 6. Polynomials and rational functions. 7. Euclidean domains and principal ideal domains. 8. Root fields and splitting fields. 9. Advice to the reader. 10. Definitions and remarks. 11. Examples and exercises. 12. Notes. 13. Concluding note -- Lecture L2. Curves and surfaces. 1. Multivariable word problems. 2. Power series and meromorphic series. 3. Valuations. 4. Advice to the reader. 5. Zorn's Lemma and well ordering. 6. Utilitarian summary. 7. Definitions and exercises. 8. Notes. 9. Concluding note Lecture L3. Tangents and polars. 1. Simple groups. 2. Quadrics. 3. Hypersurfaces. 4. Homogeneous coordinates. 5. Singularities. 6. Hensel's Lemma and Newton's theorem. 7. Integral dependence. 8. Unique factorization domains. 9. Remarks. 10. Advice to the reader. 11. Hensel and Weierstrass. 12. Definitions and exercises. 13. Notes. 14. Concluding note -- Lecture L4. Varieties and models. 1. Resultants and discriminants. 2. Varieties. 3. Noetherian rings. 4. Advice to the reader. 5. Ideals and modules. 6. Primary decomposition. 7. Localization. 8. Affine varieties. 9. Models. 10. Examples and exercises. 11. Problems. 12. Remarks. 13. Definitions and exercises. 14. Notes. 15. Concluding note -- Lecture L5. Projective varieties. 1. Direct sums of modules. 2. Grades rings and homogeneous ideals. 3. Ideal theory in graded rings. 4. Advice to the reader. 5. More about ideals and modules -- Q1. Nilpotents and zerodivisors in Noetherian rings Q2. Faithful modules and Noetherian conditions -- Q3. Jacobson radical, Zariski ring, and Nakayama Lemma -- Q4. Krull intersection theorem and Artin-Rees Lemma -- Q5. Nagata's principle of idealization -- Q6. Cohen's and Eakin's Noetherian theorems -- Q7. Principal ideal theorems -- Q8. Relative independence and analytic independence -- Q9. Going up and going down theorems -- Q10. Normalization theorem and regular polynomials -- Q11. Nilradical, Jacobson Spectrum, and Jacobson Ring -- Q12. Catenarian Rings and dimension formula -- Q13. Associated graded rings and leading ideals -- Q14. Completely normal domains -- Q15. Regular sequences and Cohen-Macaulay rings -- Q16. Complete intersections and Gorenstein Rings -- Q17. Projective resolutions of finite modules -- Q18. Direct sums of algebras, reduced rings, and PIRs -- Q19. Invertible ideals, conditions for normality, and DVRs -- Q20. Dedekind domains and Chinese remainder theorem Q21. Real ranks of valuations and segment completions -- Q22. Specializations and compositions of valuations -- Q23. UFD property of regular local domains -- Q24. Graded modules and Hilbert polynomials -- Q25. Hilbert polynomial of a hypersurfaces -- Q26. Homogeneous submodules of graded modules -- Q27. Homogeneous normalization -- Q28. Alternating sum of lengths -- Q29. Linear disjointness and intersection of varieties -- Q30. Syzygies and homogeneous resolutions -- Q31. Projective modules over polynomial rings -- Q32. Separable extensions and primitive elements -- Q33. Restricted domains and projective normalization -- Q34. Basic projective algebraic geometry -- Q. 35. Simplifying singularities by blowups |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9789812773449 9812773444 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043090266 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2006 |||| o||u| ||||||eng d | ||
020 | |a 9789812773449 |c electronic bk. |9 978-981-277-344-9 | ||
020 | |a 9812773444 |c electronic bk. |9 981-277-344-4 | ||
035 | |a (OCoLC)820942685 | ||
035 | |a (DE-599)BVBBV043090266 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512 |2 22 | |
100 | 1 | |a Abhyankar, Shreeram Shankar |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on algebra, Volume I |c S. S. Abhyankar |
264 | 1 | |a Singapore |b World Scientific |c c2006 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Lecture L6. Pause and refresh. 1. Summary of Lecture L1 on quadratic equations. 2. Summary of Lecture L2 on curves and surfaces. 3. Summary of Lecture L3 on tangents and polars. 4. Summary of Lecture L4 on varieties and models. 5. Summary of Lecture L5 on projective varieties. 6. Definitions and exercises | ||
500 | |a Includes bibliographical references (p. 689-690) and index | ||
500 | |a Lecture L1. Quadratic equations. 1. Word problems. 2. Sets and maps. 3. Groups and fields. 4. Rings and ideals. 5. Modules and vector spaces. 6. Polynomials and rational functions. 7. Euclidean domains and principal ideal domains. 8. Root fields and splitting fields. 9. Advice to the reader. 10. Definitions and remarks. 11. Examples and exercises. 12. Notes. 13. Concluding note -- Lecture L2. Curves and surfaces. 1. Multivariable word problems. 2. Power series and meromorphic series. 3. Valuations. 4. Advice to the reader. 5. Zorn's Lemma and well ordering. 6. Utilitarian summary. 7. Definitions and exercises. 8. Notes. 9. Concluding note | ||
500 | |a Lecture L3. Tangents and polars. 1. Simple groups. 2. Quadrics. 3. Hypersurfaces. 4. Homogeneous coordinates. 5. Singularities. 6. Hensel's Lemma and Newton's theorem. 7. Integral dependence. 8. Unique factorization domains. 9. Remarks. 10. Advice to the reader. 11. Hensel and Weierstrass. 12. Definitions and exercises. 13. Notes. 14. Concluding note -- Lecture L4. Varieties and models. 1. Resultants and discriminants. 2. Varieties. 3. Noetherian rings. 4. Advice to the reader. 5. Ideals and modules. 6. Primary decomposition. 7. Localization. 8. Affine varieties. 9. Models. 10. Examples and exercises. 11. Problems. 12. Remarks. 13. Definitions and exercises. 14. Notes. 15. Concluding note -- Lecture L5. Projective varieties. 1. Direct sums of modules. 2. Grades rings and homogeneous ideals. 3. Ideal theory in graded rings. 4. Advice to the reader. 5. More about ideals and modules -- Q1. Nilpotents and zerodivisors in Noetherian rings | ||
500 | |a Q2. Faithful modules and Noetherian conditions -- Q3. Jacobson radical, Zariski ring, and Nakayama Lemma -- Q4. Krull intersection theorem and Artin-Rees Lemma -- Q5. Nagata's principle of idealization -- Q6. Cohen's and Eakin's Noetherian theorems -- Q7. Principal ideal theorems -- Q8. Relative independence and analytic independence -- Q9. Going up and going down theorems -- Q10. Normalization theorem and regular polynomials -- Q11. Nilradical, Jacobson Spectrum, and Jacobson Ring -- Q12. Catenarian Rings and dimension formula -- Q13. Associated graded rings and leading ideals -- Q14. Completely normal domains -- Q15. Regular sequences and Cohen-Macaulay rings -- Q16. Complete intersections and Gorenstein Rings -- Q17. Projective resolutions of finite modules -- Q18. Direct sums of algebras, reduced rings, and PIRs -- Q19. Invertible ideals, conditions for normality, and DVRs -- Q20. Dedekind domains and Chinese remainder theorem | ||
500 | |a Q21. Real ranks of valuations and segment completions -- Q22. Specializations and compositions of valuations -- Q23. UFD property of regular local domains -- Q24. Graded modules and Hilbert polynomials -- Q25. Hilbert polynomial of a hypersurfaces -- Q26. Homogeneous submodules of graded modules -- Q27. Homogeneous normalization -- Q28. Alternating sum of lengths -- Q29. Linear disjointness and intersection of varieties -- Q30. Syzygies and homogeneous resolutions -- Q31. Projective modules over polynomial rings -- Q32. Separable extensions and primitive elements -- Q33. Restricted domains and projective normalization -- Q34. Basic projective algebraic geometry -- Q. 35. Simplifying singularities by blowups | ||
650 | 7 | |a MATHEMATICS / Algebra / Intermediate |2 bisacsh | |
650 | 7 | |a Algebra |2 fast | |
650 | 7 | |a Algebra, Abstract |2 fast | |
650 | 7 | |a Algebras, Linear |2 fast | |
650 | 4 | |a Algebra | |
650 | 4 | |a Algebra, Abstract | |
650 | 4 | |a Algebras, Linear | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514825 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028514458 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514825 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514825 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175490546663424 |
---|---|
any_adam_object | |
author | Abhyankar, Shreeram Shankar |
author_facet | Abhyankar, Shreeram Shankar |
author_role | aut |
author_sort | Abhyankar, Shreeram Shankar |
author_variant | s s a ss ssa |
building | Verbundindex |
bvnumber | BV043090266 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)820942685 (DE-599)BVBBV043090266 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05290nmm a2200481zc 4500</leader><controlfield tag="001">BV043090266</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812773449</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-277-344-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812773444</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-277-344-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)820942685</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043090266</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abhyankar, Shreeram Shankar</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on algebra, Volume I</subfield><subfield code="c">S. S. Abhyankar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Lecture L6. Pause and refresh. 1. Summary of Lecture L1 on quadratic equations. 2. Summary of Lecture L2 on curves and surfaces. 3. Summary of Lecture L3 on tangents and polars. 4. Summary of Lecture L4 on varieties and models. 5. Summary of Lecture L5 on projective varieties. 6. Definitions and exercises</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 689-690) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Lecture L1. Quadratic equations. 1. Word problems. 2. Sets and maps. 3. Groups and fields. 4. Rings and ideals. 5. Modules and vector spaces. 6. Polynomials and rational functions. 7. Euclidean domains and principal ideal domains. 8. Root fields and splitting fields. 9. Advice to the reader. 10. Definitions and remarks. 11. Examples and exercises. 12. Notes. 13. Concluding note -- Lecture L2. Curves and surfaces. 1. Multivariable word problems. 2. Power series and meromorphic series. 3. Valuations. 4. Advice to the reader. 5. Zorn's Lemma and well ordering. 6. Utilitarian summary. 7. Definitions and exercises. 8. Notes. 9. Concluding note</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Lecture L3. Tangents and polars. 1. Simple groups. 2. Quadrics. 3. Hypersurfaces. 4. Homogeneous coordinates. 5. Singularities. 6. Hensel's Lemma and Newton's theorem. 7. Integral dependence. 8. Unique factorization domains. 9. Remarks. 10. Advice to the reader. 11. Hensel and Weierstrass. 12. Definitions and exercises. 13. Notes. 14. Concluding note -- Lecture L4. Varieties and models. 1. Resultants and discriminants. 2. Varieties. 3. Noetherian rings. 4. Advice to the reader. 5. Ideals and modules. 6. Primary decomposition. 7. Localization. 8. Affine varieties. 9. Models. 10. Examples and exercises. 11. Problems. 12. Remarks. 13. Definitions and exercises. 14. Notes. 15. Concluding note -- Lecture L5. Projective varieties. 1. Direct sums of modules. 2. Grades rings and homogeneous ideals. 3. Ideal theory in graded rings. 4. Advice to the reader. 5. More about ideals and modules -- Q1. Nilpotents and zerodivisors in Noetherian rings</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Q2. Faithful modules and Noetherian conditions -- Q3. Jacobson radical, Zariski ring, and Nakayama Lemma -- Q4. Krull intersection theorem and Artin-Rees Lemma -- Q5. Nagata's principle of idealization -- Q6. Cohen's and Eakin's Noetherian theorems -- Q7. Principal ideal theorems -- Q8. Relative independence and analytic independence -- Q9. Going up and going down theorems -- Q10. Normalization theorem and regular polynomials -- Q11. Nilradical, Jacobson Spectrum, and Jacobson Ring -- Q12. Catenarian Rings and dimension formula -- Q13. Associated graded rings and leading ideals -- Q14. Completely normal domains -- Q15. Regular sequences and Cohen-Macaulay rings -- Q16. Complete intersections and Gorenstein Rings -- Q17. Projective resolutions of finite modules -- Q18. Direct sums of algebras, reduced rings, and PIRs -- Q19. Invertible ideals, conditions for normality, and DVRs -- Q20. Dedekind domains and Chinese remainder theorem</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Q21. Real ranks of valuations and segment completions -- Q22. Specializations and compositions of valuations -- Q23. UFD property of regular local domains -- Q24. Graded modules and Hilbert polynomials -- Q25. Hilbert polynomial of a hypersurfaces -- Q26. Homogeneous submodules of graded modules -- Q27. Homogeneous normalization -- Q28. Alternating sum of lengths -- Q29. Linear disjointness and intersection of varieties -- Q30. Syzygies and homogeneous resolutions -- Q31. Projective modules over polynomial rings -- Q32. Separable extensions and primitive elements -- Q33. Restricted domains and projective normalization -- Q34. Basic projective algebraic geometry -- Q. 35. Simplifying singularities by blowups</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Intermediate</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebra</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebra, Abstract</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebras, Linear</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra, Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebras, Linear</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514825</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028514458</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514825</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514825</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043090266 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:07Z |
institution | BVB |
isbn | 9789812773449 9812773444 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028514458 |
oclc_num | 820942685 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | World Scientific |
record_format | marc |
spelling | Abhyankar, Shreeram Shankar Verfasser aut Lectures on algebra, Volume I S. S. Abhyankar Singapore World Scientific c2006 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Lecture L6. Pause and refresh. 1. Summary of Lecture L1 on quadratic equations. 2. Summary of Lecture L2 on curves and surfaces. 3. Summary of Lecture L3 on tangents and polars. 4. Summary of Lecture L4 on varieties and models. 5. Summary of Lecture L5 on projective varieties. 6. Definitions and exercises Includes bibliographical references (p. 689-690) and index Lecture L1. Quadratic equations. 1. Word problems. 2. Sets and maps. 3. Groups and fields. 4. Rings and ideals. 5. Modules and vector spaces. 6. Polynomials and rational functions. 7. Euclidean domains and principal ideal domains. 8. Root fields and splitting fields. 9. Advice to the reader. 10. Definitions and remarks. 11. Examples and exercises. 12. Notes. 13. Concluding note -- Lecture L2. Curves and surfaces. 1. Multivariable word problems. 2. Power series and meromorphic series. 3. Valuations. 4. Advice to the reader. 5. Zorn's Lemma and well ordering. 6. Utilitarian summary. 7. Definitions and exercises. 8. Notes. 9. Concluding note Lecture L3. Tangents and polars. 1. Simple groups. 2. Quadrics. 3. Hypersurfaces. 4. Homogeneous coordinates. 5. Singularities. 6. Hensel's Lemma and Newton's theorem. 7. Integral dependence. 8. Unique factorization domains. 9. Remarks. 10. Advice to the reader. 11. Hensel and Weierstrass. 12. Definitions and exercises. 13. Notes. 14. Concluding note -- Lecture L4. Varieties and models. 1. Resultants and discriminants. 2. Varieties. 3. Noetherian rings. 4. Advice to the reader. 5. Ideals and modules. 6. Primary decomposition. 7. Localization. 8. Affine varieties. 9. Models. 10. Examples and exercises. 11. Problems. 12. Remarks. 13. Definitions and exercises. 14. Notes. 15. Concluding note -- Lecture L5. Projective varieties. 1. Direct sums of modules. 2. Grades rings and homogeneous ideals. 3. Ideal theory in graded rings. 4. Advice to the reader. 5. More about ideals and modules -- Q1. Nilpotents and zerodivisors in Noetherian rings Q2. Faithful modules and Noetherian conditions -- Q3. Jacobson radical, Zariski ring, and Nakayama Lemma -- Q4. Krull intersection theorem and Artin-Rees Lemma -- Q5. Nagata's principle of idealization -- Q6. Cohen's and Eakin's Noetherian theorems -- Q7. Principal ideal theorems -- Q8. Relative independence and analytic independence -- Q9. Going up and going down theorems -- Q10. Normalization theorem and regular polynomials -- Q11. Nilradical, Jacobson Spectrum, and Jacobson Ring -- Q12. Catenarian Rings and dimension formula -- Q13. Associated graded rings and leading ideals -- Q14. Completely normal domains -- Q15. Regular sequences and Cohen-Macaulay rings -- Q16. Complete intersections and Gorenstein Rings -- Q17. Projective resolutions of finite modules -- Q18. Direct sums of algebras, reduced rings, and PIRs -- Q19. Invertible ideals, conditions for normality, and DVRs -- Q20. Dedekind domains and Chinese remainder theorem Q21. Real ranks of valuations and segment completions -- Q22. Specializations and compositions of valuations -- Q23. UFD property of regular local domains -- Q24. Graded modules and Hilbert polynomials -- Q25. Hilbert polynomial of a hypersurfaces -- Q26. Homogeneous submodules of graded modules -- Q27. Homogeneous normalization -- Q28. Alternating sum of lengths -- Q29. Linear disjointness and intersection of varieties -- Q30. Syzygies and homogeneous resolutions -- Q31. Projective modules over polynomial rings -- Q32. Separable extensions and primitive elements -- Q33. Restricted domains and projective normalization -- Q34. Basic projective algebraic geometry -- Q. 35. Simplifying singularities by blowups MATHEMATICS / Algebra / Intermediate bisacsh Algebra fast Algebra, Abstract fast Algebras, Linear fast Algebra Algebra, Abstract Algebras, Linear http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514825 Aggregator Volltext |
spellingShingle | Abhyankar, Shreeram Shankar Lectures on algebra, Volume I MATHEMATICS / Algebra / Intermediate bisacsh Algebra fast Algebra, Abstract fast Algebras, Linear fast Algebra Algebra, Abstract Algebras, Linear |
title | Lectures on algebra, Volume I |
title_auth | Lectures on algebra, Volume I |
title_exact_search | Lectures on algebra, Volume I |
title_full | Lectures on algebra, Volume I S. S. Abhyankar |
title_fullStr | Lectures on algebra, Volume I S. S. Abhyankar |
title_full_unstemmed | Lectures on algebra, Volume I S. S. Abhyankar |
title_short | Lectures on algebra, Volume I |
title_sort | lectures on algebra volume i |
topic | MATHEMATICS / Algebra / Intermediate bisacsh Algebra fast Algebra, Abstract fast Algebras, Linear fast Algebra Algebra, Abstract Algebras, Linear |
topic_facet | MATHEMATICS / Algebra / Intermediate Algebra Algebra, Abstract Algebras, Linear |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514825 |
work_keys_str_mv | AT abhyankarshreeramshankar lecturesonalgebravolumei |