Higher topos theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
2009
|
Schriftenreihe: | Annals of mathematics studies
no. 170 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 909-914) and indexes Cover; Contents; Preface; Chapter 1. An Overview of Higher Category Theory; Chapter 2. Fibrations of Simplicial Sets; Chapter 3. The 8-Category of 8-Categories; Chapter 4. Limits and Colimits; Chapter 5. Presentable and Accessible 8-Categories; Chapter 6. 8-Topoi; Chapter 7. Higher Topos Theory in Topology; Appendix; Bibliography; General Index; Index of Notation Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In Higher Topos Theory, Jacob Lurie presents the foundations of this theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language. The result is a powerful theory with applications in many areas of mathematics. The book's firs |
Beschreibung: | 1 Online-Ressource (xv, 925 pages) |
ISBN: | 0691140499 1400830559 9780691140490 9781400830558 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043088931 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2009 |||| o||u| ||||||eng d | ||
020 | |a 0691140499 |c pbk.: alk. paper |9 0-691-14049-9 | ||
020 | |a 1400830559 |c electronic bk. |9 1-4008-3055-9 | ||
020 | |a 9780691140490 |c pbk.: alk. paper |9 978-0-691-14049-0 | ||
020 | |a 9781400830558 |c electronic bk. |9 978-1-4008-3055-8 | ||
035 | |a (OCoLC)650311558 | ||
035 | |a (DE-599)BVBBV043088931 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512/.62 |2 22 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
100 | 1 | |a Lurie, Jacob |e Verfasser |4 aut | |
245 | 1 | 0 | |a Higher topos theory |c Jacob Lurie |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c 2009 | |
300 | |a 1 Online-Ressource (xv, 925 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Annals of mathematics studies |v no. 170 | |
500 | |a Includes bibliographical references (pages 909-914) and indexes | ||
500 | |a Cover; Contents; Preface; Chapter 1. An Overview of Higher Category Theory; Chapter 2. Fibrations of Simplicial Sets; Chapter 3. The 8-Category of 8-Categories; Chapter 4. Limits and Colimits; Chapter 5. Presentable and Accessible 8-Categories; Chapter 6. 8-Topoi; Chapter 7. Higher Topos Theory in Topology; Appendix; Bibliography; General Index; Index of Notation | ||
500 | |a Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In Higher Topos Theory, Jacob Lurie presents the foundations of this theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language. The result is a powerful theory with applications in many areas of mathematics. The book's firs | ||
650 | 4 | |a Mathematics | |
650 | 7 | |a MATHEMATICS / Algebra / Intermediate |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Algebra / Abstract |2 bisacsh | |
650 | 7 | |a Categories (Mathematics) |2 fast | |
650 | 7 | |a Toposes |2 fast | |
650 | 7 | |a Kategorientheorie |2 swd | |
650 | 7 | |a Topos (Mathematik) |2 swd | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Toposes | |
650 | 4 | |a Categories (Mathematics) | |
650 | 0 | 7 | |a Topos |g Mathematik |0 (DE-588)4185717-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kategorientheorie |0 (DE-588)4120552-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kategorientheorie |0 (DE-588)4120552-2 |D s |
689 | 0 | 1 | |a Topos |g Mathematik |0 (DE-588)4185717-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 0-691-14048-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-691-14048-3 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=329851 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028513122 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=329851 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=329851 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175488045809664 |
---|---|
any_adam_object | |
author | Lurie, Jacob |
author_facet | Lurie, Jacob |
author_role | aut |
author_sort | Lurie, Jacob |
author_variant | j l jl |
building | Verbundindex |
bvnumber | BV043088931 |
classification_rvk | SI 830 SK 320 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)650311558 (DE-599)BVBBV043088931 |
dewey-full | 512/.62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.62 |
dewey-search | 512/.62 |
dewey-sort | 3512 262 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03556nmm a2200637zcb4500</leader><controlfield tag="001">BV043088931</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691140499</subfield><subfield code="c">pbk.: alk. paper</subfield><subfield code="9">0-691-14049-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400830559</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-3055-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691140490</subfield><subfield code="c">pbk.: alk. paper</subfield><subfield code="9">978-0-691-14049-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400830558</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-3055-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)650311558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043088931</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.62</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lurie, Jacob</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Higher topos theory</subfield><subfield code="c">Jacob Lurie</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 925 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">no. 170</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 909-914) and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover; Contents; Preface; Chapter 1. An Overview of Higher Category Theory; Chapter 2. Fibrations of Simplicial Sets; Chapter 3. The 8-Category of 8-Categories; Chapter 4. Limits and Colimits; Chapter 5. Presentable and Accessible 8-Categories; Chapter 6. 8-Topoi; Chapter 7. Higher Topos Theory in Topology; Appendix; Bibliography; General Index; Index of Notation</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In Higher Topos Theory, Jacob Lurie presents the foundations of this theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language. The result is a powerful theory with applications in many areas of mathematics. The book's firs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Intermediate</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Abstract</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Categories (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Toposes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kategorientheorie</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topos (Mathematik)</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toposes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Categories (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topos</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4185717-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topos</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4185717-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">0-691-14048-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-691-14048-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=329851</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028513122</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=329851</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=329851</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043088931 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:05Z |
institution | BVB |
isbn | 0691140499 1400830559 9780691140490 9781400830558 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028513122 |
oclc_num | 650311558 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xv, 925 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Princeton University Press |
record_format | marc |
series2 | Annals of mathematics studies |
spelling | Lurie, Jacob Verfasser aut Higher topos theory Jacob Lurie Princeton, N.J. Princeton University Press 2009 1 Online-Ressource (xv, 925 pages) txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies no. 170 Includes bibliographical references (pages 909-914) and indexes Cover; Contents; Preface; Chapter 1. An Overview of Higher Category Theory; Chapter 2. Fibrations of Simplicial Sets; Chapter 3. The 8-Category of 8-Categories; Chapter 4. Limits and Colimits; Chapter 5. Presentable and Accessible 8-Categories; Chapter 6. 8-Topoi; Chapter 7. Higher Topos Theory in Topology; Appendix; Bibliography; General Index; Index of Notation Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In Higher Topos Theory, Jacob Lurie presents the foundations of this theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language. The result is a powerful theory with applications in many areas of mathematics. The book's firs Mathematics MATHEMATICS / Algebra / Intermediate bisacsh MATHEMATICS / Algebra / Abstract bisacsh Categories (Mathematics) fast Toposes fast Kategorientheorie swd Topos (Mathematik) swd Mathematik Toposes Categories (Mathematics) Topos Mathematik (DE-588)4185717-3 gnd rswk-swf Kategorientheorie (DE-588)4120552-2 gnd rswk-swf Kategorientheorie (DE-588)4120552-2 s Topos Mathematik (DE-588)4185717-3 s 1\p DE-604 Erscheint auch als Druckausgabe 0-691-14048-0 Erscheint auch als Druckausgabe 978-0-691-14048-3 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=329851 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lurie, Jacob Higher topos theory Mathematics MATHEMATICS / Algebra / Intermediate bisacsh MATHEMATICS / Algebra / Abstract bisacsh Categories (Mathematics) fast Toposes fast Kategorientheorie swd Topos (Mathematik) swd Mathematik Toposes Categories (Mathematics) Topos Mathematik (DE-588)4185717-3 gnd Kategorientheorie (DE-588)4120552-2 gnd |
subject_GND | (DE-588)4185717-3 (DE-588)4120552-2 |
title | Higher topos theory |
title_auth | Higher topos theory |
title_exact_search | Higher topos theory |
title_full | Higher topos theory Jacob Lurie |
title_fullStr | Higher topos theory Jacob Lurie |
title_full_unstemmed | Higher topos theory Jacob Lurie |
title_short | Higher topos theory |
title_sort | higher topos theory |
topic | Mathematics MATHEMATICS / Algebra / Intermediate bisacsh MATHEMATICS / Algebra / Abstract bisacsh Categories (Mathematics) fast Toposes fast Kategorientheorie swd Topos (Mathematik) swd Mathematik Toposes Categories (Mathematics) Topos Mathematik (DE-588)4185717-3 gnd Kategorientheorie (DE-588)4120552-2 gnd |
topic_facet | Mathematics MATHEMATICS / Algebra / Intermediate MATHEMATICS / Algebra / Abstract Categories (Mathematics) Toposes Kategorientheorie Topos (Mathematik) Mathematik Topos Mathematik |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=329851 |
work_keys_str_mv | AT luriejacob highertopostheory |