The ergodic theory of lattice subgroups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton
Princeton University Press
2010
|
Schriftenreihe: | Annals of mathematics studies
no. 172 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 117-120) and index Cover; Title; Copyright; Contents; Preface; Chapter 1. Main results: Semisimple Lie groups case; Chapter 2. Examples and applications; Chapter 3. Definitions, preliminaries, and basic tools; Chapter 4. Main results and an overview of the proofs; Chapter 5. Proof of ergodic theorems for S-algebraic groups; Chapter 6. Proof of ergodic theorems for lattice subgroups; Chapter 7. Volume estimates and volume regularity; Chapter 8. Comments and complements; Bibliography; Index The results established in this book constitute a new departure in ergodic theory and a significant expansion of its scope. Traditional ergodic theorems focused on amenable groups, and relied on the existence of an asymptotically invariant sequence in the group, the resulting maximal inequalities based on covering arguments, and the transference principle. Here, Alexander Gorodnik and Amos Nevo develop a systematic general approach to the proof of ergodic theorems for a large class of non-amenable locally compact groups and their lattice subgroups. Simple general conditions on the spectral the |
Beschreibung: | 1 Online-Ressource (xiii, 120 pages) |
ISBN: | 0691141851 1400831067 9780691141855 9781400831067 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043087932 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2010 |||| o||u| ||||||eng d | ||
020 | |a 0691141851 |c pbk. |9 0-691-14185-1 | ||
020 | |a 1400831067 |c electronic bk. |9 1-4008-3106-7 | ||
020 | |a 9780691141855 |c pbk. |9 978-0-691-14185-5 | ||
020 | |a 9781400831067 |c electronic bk. |9 978-1-4008-3106-7 | ||
035 | |a (OCoLC)507428541 | ||
035 | |a (DE-599)BVBBV043087932 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.48 |2 22 | |
100 | 1 | |a Gorodnik, Alexander |e Verfasser |4 aut | |
245 | 1 | 0 | |a The ergodic theory of lattice subgroups |c Alexander Gorodnik, Amos Nevo |
264 | 1 | |a Princeton |b Princeton University Press |c 2010 | |
300 | |a 1 Online-Ressource (xiii, 120 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Annals of mathematics studies |v no. 172 | |
500 | |a Includes bibliographical references (pages 117-120) and index | ||
500 | |a Cover; Title; Copyright; Contents; Preface; Chapter 1. Main results: Semisimple Lie groups case; Chapter 2. Examples and applications; Chapter 3. Definitions, preliminaries, and basic tools; Chapter 4. Main results and an overview of the proofs; Chapter 5. Proof of ergodic theorems for S-algebraic groups; Chapter 6. Proof of ergodic theorems for lattice subgroups; Chapter 7. Volume estimates and volume regularity; Chapter 8. Comments and complements; Bibliography; Index | ||
500 | |a The results established in this book constitute a new departure in ergodic theory and a significant expansion of its scope. Traditional ergodic theorems focused on amenable groups, and relied on the existence of an asymptotically invariant sequence in the group, the resulting maximal inequalities based on covering arguments, and the transference principle. Here, Alexander Gorodnik and Amos Nevo develop a systematic general approach to the proof of ergodic theorems for a large class of non-amenable locally compact groups and their lattice subgroups. Simple general conditions on the spectral the | ||
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Group Theory |2 bisacsh | |
650 | 7 | |a Dynamics |2 fast | |
650 | 7 | |a Ergodic theory |2 fast | |
650 | 7 | |a Harmonic analysis |2 fast | |
650 | 7 | |a Lattice theory |2 fast | |
650 | 7 | |a Lie groups |2 fast | |
650 | 4 | |a Ergodic theory | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Lattice theory | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Dynamics | |
700 | 1 | |a Nevo, Amos |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 0-691-14184-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-691-14184-8 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=295569 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028512124 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=295569 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=295569 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175486110138368 |
---|---|
any_adam_object | |
author | Gorodnik, Alexander |
author_facet | Gorodnik, Alexander |
author_role | aut |
author_sort | Gorodnik, Alexander |
author_variant | a g ag |
building | Verbundindex |
bvnumber | BV043087932 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)507428541 (DE-599)BVBBV043087932 |
dewey-full | 515/.48 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.48 |
dewey-search | 515/.48 |
dewey-sort | 3515 248 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03365nmm a2200589zcb4500</leader><controlfield tag="001">BV043087932</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691141851</subfield><subfield code="c">pbk.</subfield><subfield code="9">0-691-14185-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400831067</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-3106-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691141855</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-0-691-14185-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400831067</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-3106-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)507428541</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043087932</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.48</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gorodnik, Alexander</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The ergodic theory of lattice subgroups</subfield><subfield code="c">Alexander Gorodnik, Amos Nevo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 120 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">no. 172</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 117-120) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Preface; Chapter 1. Main results: Semisimple Lie groups case; Chapter 2. Examples and applications; Chapter 3. Definitions, preliminaries, and basic tools; Chapter 4. Main results and an overview of the proofs; Chapter 5. Proof of ergodic theorems for S-algebraic groups; Chapter 6. Proof of ergodic theorems for lattice subgroups; Chapter 7. Volume estimates and volume regularity; Chapter 8. Comments and complements; Bibliography; Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The results established in this book constitute a new departure in ergodic theory and a significant expansion of its scope. Traditional ergodic theorems focused on amenable groups, and relied on the existence of an asymptotically invariant sequence in the group, the resulting maximal inequalities based on covering arguments, and the transference principle. Here, Alexander Gorodnik and Amos Nevo develop a systematic general approach to the proof of ergodic theorems for a large class of non-amenable locally compact groups and their lattice subgroups. Simple general conditions on the spectral the</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Group Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ergodic theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lattice theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ergodic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lattice theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nevo, Amos</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">0-691-14184-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-691-14184-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=295569</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028512124</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=295569</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=295569</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043087932 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:03Z |
institution | BVB |
isbn | 0691141851 1400831067 9780691141855 9781400831067 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028512124 |
oclc_num | 507428541 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiii, 120 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Princeton University Press |
record_format | marc |
series2 | Annals of mathematics studies |
spelling | Gorodnik, Alexander Verfasser aut The ergodic theory of lattice subgroups Alexander Gorodnik, Amos Nevo Princeton Princeton University Press 2010 1 Online-Ressource (xiii, 120 pages) txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies no. 172 Includes bibliographical references (pages 117-120) and index Cover; Title; Copyright; Contents; Preface; Chapter 1. Main results: Semisimple Lie groups case; Chapter 2. Examples and applications; Chapter 3. Definitions, preliminaries, and basic tools; Chapter 4. Main results and an overview of the proofs; Chapter 5. Proof of ergodic theorems for S-algebraic groups; Chapter 6. Proof of ergodic theorems for lattice subgroups; Chapter 7. Volume estimates and volume regularity; Chapter 8. Comments and complements; Bibliography; Index The results established in this book constitute a new departure in ergodic theory and a significant expansion of its scope. Traditional ergodic theorems focused on amenable groups, and relied on the existence of an asymptotically invariant sequence in the group, the resulting maximal inequalities based on covering arguments, and the transference principle. Here, Alexander Gorodnik and Amos Nevo develop a systematic general approach to the proof of ergodic theorems for a large class of non-amenable locally compact groups and their lattice subgroups. Simple general conditions on the spectral the MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh MATHEMATICS / Group Theory bisacsh Dynamics fast Ergodic theory fast Harmonic analysis fast Lattice theory fast Lie groups fast Ergodic theory Lie groups Lattice theory Harmonic analysis Dynamics Nevo, Amos Sonstige oth Erscheint auch als Druckausgabe 0-691-14184-3 Erscheint auch als Druckausgabe 978-0-691-14184-8 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=295569 Aggregator Volltext |
spellingShingle | Gorodnik, Alexander The ergodic theory of lattice subgroups MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh MATHEMATICS / Group Theory bisacsh Dynamics fast Ergodic theory fast Harmonic analysis fast Lattice theory fast Lie groups fast Ergodic theory Lie groups Lattice theory Harmonic analysis Dynamics |
title | The ergodic theory of lattice subgroups |
title_auth | The ergodic theory of lattice subgroups |
title_exact_search | The ergodic theory of lattice subgroups |
title_full | The ergodic theory of lattice subgroups Alexander Gorodnik, Amos Nevo |
title_fullStr | The ergodic theory of lattice subgroups Alexander Gorodnik, Amos Nevo |
title_full_unstemmed | The ergodic theory of lattice subgroups Alexander Gorodnik, Amos Nevo |
title_short | The ergodic theory of lattice subgroups |
title_sort | the ergodic theory of lattice subgroups |
topic | MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh MATHEMATICS / Group Theory bisacsh Dynamics fast Ergodic theory fast Harmonic analysis fast Lattice theory fast Lie groups fast Ergodic theory Lie groups Lattice theory Harmonic analysis Dynamics |
topic_facet | MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis MATHEMATICS / Group Theory Dynamics Ergodic theory Harmonic analysis Lattice theory Lie groups |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=295569 |
work_keys_str_mv | AT gorodnikalexander theergodictheoryoflatticesubgroups AT nevoamos theergodictheoryoflatticesubgroups |