Infinite dimensional optimization and control theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York
Cambridge University Press
1999
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
v.62 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 773-793) and index Pt. I. - Finite Dimensional Control Problems - 1 - Calculus of Variations and Control Theory - 2 - Optimal Control Problems Without Target Conditions - 3 - Abstract Minimization Problems: The Minimum Principle for the Time Optimal Problem - 4 - The Minimum Principle for General Optimal Control Problems -- - Pt. II. - Infinite Dimensional Control Problems - 5 - Differential Equations in Banach Spaces and Semigroup Theory - 6 - Abstract Minimization Problems in Hilbert Spaces - 7 - Abstract Minimization Problems in Banach Spaces - 8 - Interpolation and Domains of Fractional Powers - 9 - Linear Control Systems - 10 - Optimal Control Problems with State Constraints - 11 - Optimal Control Problems with State Constraints -- - Pt. III. - Relaxed Controls This book is on existence and necessary conditions, such as Potryagin's maximum principle, for optimal control problems described by ordinary and partial differential equations. These necessary conditions are obtained from Kuhn-Tucker theorems for nonlinear programming problems in infinite dimensional spaces. The optimal control problems include control constraints, state constraints and target conditions. Evolution partial differential equations are studied using semigroup theory, abstract differential equations in linear spaces, integral equations and interpolation theory. Existence of optimal controls is established for arbitrary control sets by means of a general theory of relaxed controls |
Beschreibung: | 1 Online-Ressource (xv, 798 p.) |
ISBN: | 0511574797 0521451256 1107088585 9780511574795 9780521451253 9781107088580 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043087513 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s1999 |||| o||u| ||||||eng d | ||
020 | |a 0511574797 |c electronic bk. |9 0-511-57479-7 | ||
020 | |a 0521451256 |9 0-521-45125-6 | ||
020 | |a 1107088585 |c electronic bk. |9 1-107-08858-5 | ||
020 | |a 9780511574795 |c electronic bk. |9 978-0-511-57479-5 | ||
020 | |a 9780521451253 |9 978-0-521-45125-3 | ||
020 | |a 9781107088580 |c electronic bk. |9 978-1-107-08858-0 | ||
035 | |a (OCoLC)841487474 | ||
035 | |a (DE-599)BVBBV043087513 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 003/.5 |2 22 | |
100 | 1 | |a Fattorini, H. O., (Hector O.) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Infinite dimensional optimization and control theory |c H.O. Fattorini |
264 | 1 | |a New York |b Cambridge University Press |c 1999 | |
300 | |a 1 Online-Ressource (xv, 798 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v v.62 | |
500 | |a Includes bibliographical references (p. 773-793) and index | ||
500 | |a Pt. I. - Finite Dimensional Control Problems - 1 - Calculus of Variations and Control Theory - 2 - Optimal Control Problems Without Target Conditions - 3 - Abstract Minimization Problems: The Minimum Principle for the Time Optimal Problem - 4 - The Minimum Principle for General Optimal Control Problems -- - Pt. II. - Infinite Dimensional Control Problems - 5 - Differential Equations in Banach Spaces and Semigroup Theory - 6 - Abstract Minimization Problems in Hilbert Spaces - 7 - Abstract Minimization Problems in Banach Spaces - 8 - Interpolation and Domains of Fractional Powers - 9 - Linear Control Systems - 10 - Optimal Control Problems with State Constraints - 11 - Optimal Control Problems with State Constraints -- - Pt. III. - Relaxed Controls | ||
500 | |a This book is on existence and necessary conditions, such as Potryagin's maximum principle, for optimal control problems described by ordinary and partial differential equations. These necessary conditions are obtained from Kuhn-Tucker theorems for nonlinear programming problems in infinite dimensional spaces. The optimal control problems include control constraints, state constraints and target conditions. Evolution partial differential equations are studied using semigroup theory, abstract differential equations in linear spaces, integral equations and interpolation theory. Existence of optimal controls is established for arbitrary control sets by means of a general theory of relaxed controls | ||
650 | 7 | |a Optimaliseren |2 gtt | |
650 | 7 | |a Variatierekening |2 gtt | |
650 | 7 | |a Controleleer |2 gtt | |
650 | 4 | |a Optimisation mathématique | |
650 | 4 | |a Calcul des variations | |
650 | 4 | |a Commande, Théorie de la | |
650 | 7 | |a Calcul des variations |2 ram | |
650 | 7 | |a Optimisation mathématique |2 ram | |
650 | 7 | |a Commande, Théorie de la |2 ram | |
650 | 7 | |a COMPUTERS / Cybernetics |2 bisacsh | |
650 | 7 | |a Calculus of variations |2 fast | |
650 | 7 | |a Control theory |2 fast | |
650 | 7 | |a Mathematical optimization |2 fast | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Calculus of variations | |
650 | 4 | |a Control theory | |
650 | 0 | 7 | |a Unendlichdimensionales System |0 (DE-588)4207956-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kontrolltheorie |0 (DE-588)4032317-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Variationsrechnung |0 (DE-588)4062355-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 0 | 1 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | 2 | |a Kontrolltheorie |0 (DE-588)4032317-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Unendlichdimensionales System |0 (DE-588)4207956-1 |D s |
689 | 1 | 1 | |a Kontrolltheorie |0 (DE-588)4032317-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569343 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028511705 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569343 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569343 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175485360406528 |
---|---|
any_adam_object | |
author | Fattorini, H. O., (Hector O.) |
author_facet | Fattorini, H. O., (Hector O.) |
author_role | aut |
author_sort | Fattorini, H. O., (Hector O.) |
author_variant | h o h o f hoho hohof |
building | Verbundindex |
bvnumber | BV043087513 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)841487474 (DE-599)BVBBV043087513 |
dewey-full | 003/.5 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003/.5 |
dewey-search | 003/.5 |
dewey-sort | 13 15 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04655nmm a2200769zcb4500</leader><controlfield tag="001">BV043087513</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511574797</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-511-57479-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521451256</subfield><subfield code="9">0-521-45125-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107088585</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-08858-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511574795</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-511-57479-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521451253</subfield><subfield code="9">978-0-521-45125-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107088580</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-08858-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)841487474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043087513</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003/.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fattorini, H. O., (Hector O.)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Infinite dimensional optimization and control theory</subfield><subfield code="c">H.O. Fattorini</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 798 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">v.62</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 773-793) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Pt. I. - Finite Dimensional Control Problems - 1 - Calculus of Variations and Control Theory - 2 - Optimal Control Problems Without Target Conditions - 3 - Abstract Minimization Problems: The Minimum Principle for the Time Optimal Problem - 4 - The Minimum Principle for General Optimal Control Problems -- - Pt. II. - Infinite Dimensional Control Problems - 5 - Differential Equations in Banach Spaces and Semigroup Theory - 6 - Abstract Minimization Problems in Hilbert Spaces - 7 - Abstract Minimization Problems in Banach Spaces - 8 - Interpolation and Domains of Fractional Powers - 9 - Linear Control Systems - 10 - Optimal Control Problems with State Constraints - 11 - Optimal Control Problems with State Constraints -- - Pt. III. - Relaxed Controls</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is on existence and necessary conditions, such as Potryagin's maximum principle, for optimal control problems described by ordinary and partial differential equations. These necessary conditions are obtained from Kuhn-Tucker theorems for nonlinear programming problems in infinite dimensional spaces. The optimal control problems include control constraints, state constraints and target conditions. Evolution partial differential equations are studied using semigroup theory, abstract differential equations in linear spaces, integral equations and interpolation theory. Existence of optimal controls is established for arbitrary control sets by means of a general theory of relaxed controls</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimaliseren</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variatierekening</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Controleleer</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimisation mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calcul des variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commande, Théorie de la</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calcul des variations</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimisation mathématique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Commande, Théorie de la</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Cybernetics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calculus of variations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Control theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical optimization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unendlichdimensionales System</subfield><subfield code="0">(DE-588)4207956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Unendlichdimensionales System</subfield><subfield code="0">(DE-588)4207956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569343</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028511705</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569343</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569343</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043087513 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:02Z |
institution | BVB |
isbn | 0511574797 0521451256 1107088585 9780511574795 9780521451253 9781107088580 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028511705 |
oclc_num | 841487474 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xv, 798 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Fattorini, H. O., (Hector O.) Verfasser aut Infinite dimensional optimization and control theory H.O. Fattorini New York Cambridge University Press 1999 1 Online-Ressource (xv, 798 p.) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications v.62 Includes bibliographical references (p. 773-793) and index Pt. I. - Finite Dimensional Control Problems - 1 - Calculus of Variations and Control Theory - 2 - Optimal Control Problems Without Target Conditions - 3 - Abstract Minimization Problems: The Minimum Principle for the Time Optimal Problem - 4 - The Minimum Principle for General Optimal Control Problems -- - Pt. II. - Infinite Dimensional Control Problems - 5 - Differential Equations in Banach Spaces and Semigroup Theory - 6 - Abstract Minimization Problems in Hilbert Spaces - 7 - Abstract Minimization Problems in Banach Spaces - 8 - Interpolation and Domains of Fractional Powers - 9 - Linear Control Systems - 10 - Optimal Control Problems with State Constraints - 11 - Optimal Control Problems with State Constraints -- - Pt. III. - Relaxed Controls This book is on existence and necessary conditions, such as Potryagin's maximum principle, for optimal control problems described by ordinary and partial differential equations. These necessary conditions are obtained from Kuhn-Tucker theorems for nonlinear programming problems in infinite dimensional spaces. The optimal control problems include control constraints, state constraints and target conditions. Evolution partial differential equations are studied using semigroup theory, abstract differential equations in linear spaces, integral equations and interpolation theory. Existence of optimal controls is established for arbitrary control sets by means of a general theory of relaxed controls Optimaliseren gtt Variatierekening gtt Controleleer gtt Optimisation mathématique Calcul des variations Commande, Théorie de la Calcul des variations ram Optimisation mathématique ram Commande, Théorie de la ram COMPUTERS / Cybernetics bisacsh Calculus of variations fast Control theory fast Mathematical optimization fast Mathematical optimization Calculus of variations Control theory Unendlichdimensionales System (DE-588)4207956-1 gnd rswk-swf Kontrolltheorie (DE-588)4032317-1 gnd rswk-swf Variationsrechnung (DE-588)4062355-5 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf Variationsrechnung (DE-588)4062355-5 s Optimierung (DE-588)4043664-0 s Kontrolltheorie (DE-588)4032317-1 s 1\p DE-604 Unendlichdimensionales System (DE-588)4207956-1 s 2\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569343 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fattorini, H. O., (Hector O.) Infinite dimensional optimization and control theory Optimaliseren gtt Variatierekening gtt Controleleer gtt Optimisation mathématique Calcul des variations Commande, Théorie de la Calcul des variations ram Optimisation mathématique ram Commande, Théorie de la ram COMPUTERS / Cybernetics bisacsh Calculus of variations fast Control theory fast Mathematical optimization fast Mathematical optimization Calculus of variations Control theory Unendlichdimensionales System (DE-588)4207956-1 gnd Kontrolltheorie (DE-588)4032317-1 gnd Variationsrechnung (DE-588)4062355-5 gnd Optimierung (DE-588)4043664-0 gnd |
subject_GND | (DE-588)4207956-1 (DE-588)4032317-1 (DE-588)4062355-5 (DE-588)4043664-0 |
title | Infinite dimensional optimization and control theory |
title_auth | Infinite dimensional optimization and control theory |
title_exact_search | Infinite dimensional optimization and control theory |
title_full | Infinite dimensional optimization and control theory H.O. Fattorini |
title_fullStr | Infinite dimensional optimization and control theory H.O. Fattorini |
title_full_unstemmed | Infinite dimensional optimization and control theory H.O. Fattorini |
title_short | Infinite dimensional optimization and control theory |
title_sort | infinite dimensional optimization and control theory |
topic | Optimaliseren gtt Variatierekening gtt Controleleer gtt Optimisation mathématique Calcul des variations Commande, Théorie de la Calcul des variations ram Optimisation mathématique ram Commande, Théorie de la ram COMPUTERS / Cybernetics bisacsh Calculus of variations fast Control theory fast Mathematical optimization fast Mathematical optimization Calculus of variations Control theory Unendlichdimensionales System (DE-588)4207956-1 gnd Kontrolltheorie (DE-588)4032317-1 gnd Variationsrechnung (DE-588)4062355-5 gnd Optimierung (DE-588)4043664-0 gnd |
topic_facet | Optimaliseren Variatierekening Controleleer Optimisation mathématique Calcul des variations Commande, Théorie de la COMPUTERS / Cybernetics Calculus of variations Control theory Mathematical optimization Unendlichdimensionales System Kontrolltheorie Variationsrechnung Optimierung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569343 |
work_keys_str_mv | AT fattorinihohectoro infinitedimensionaloptimizationandcontroltheory |