Classical covariant fields:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, U.K.
Cambridge University Press
2002
|
Schriftenreihe: | Cambridge monographs on mathematical physics
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 515-519) and index pt. 1 - Fields - 1 - Introduction - 2 - The electromagnetic field - 3 - Field parameters - 4 - The action principle - 5 - Classical field dynamics - 6 - Statistical interpretation of the field - 7 - Examples and applications -- - pt. 2 - Groups and fields - 8 - Field transformations - 9 - Spacetime transformations - 10 - Kinematical and dynamical transformations - 11 - Position and momentum - 12 - Charge and current - 13 - The non-relativistic limit - 14 - Unified kinematics and dynamics - 15 - Epilogue: quantum field theory -- - pt. 3 - Reference: a compendium of fields - 16 - Gallery of definitions - 17 - The Schrodinger field - 18 - The real Klein-Gordon field - 19 - The complex Klein-Gordon field - 20 - The Dirac field - 21 - The Maxwell radiation field "This book discusses the classical foundations of field theory, using the language of variational methods and covariance. There is no other book which gives such a comprehensive overview of the subject, exploring the limits of what can be achieved with purely classical notions. These classical notions have a deep and important connection with the second quantized field theory, which is shown to follow on from the Schwinger Action Principle. The book takes a pragmatic view of field theory, focusing on issues which are usually omitted from quantum field theory texts. It uses a well documented set of conventions and catalogues results which are often hard to find in the literature Care is taken to explain how results arise and how to interpret results physically, for graduate students starting out in the field. Many physical examples are provided, making the book an ideal supplementary text for courses on elementary field theory, group theory and dynamical systems. It will also be a valuable reference for researchers already working in these and related areas."--Jacket |
Beschreibung: | 1 Online-Ressource (xx, 529 pages) |
ISBN: | 0511019424 0511535058 0521813638 9780511019425 9780511535055 9780521813631 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043084474 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2002 |||| o||u| ||||||eng d | ||
020 | |a 0511019424 |9 0-511-01942-4 | ||
020 | |a 0511535058 |9 0-511-53505-8 | ||
020 | |a 0521813638 |9 0-521-81363-8 | ||
020 | |a 9780511019425 |9 978-0-511-01942-5 | ||
020 | |a 9780511535055 |9 978-0-511-53505-5 | ||
020 | |a 9780521813631 |9 978-0-521-81363-1 | ||
035 | |a (OCoLC)52568841 | ||
035 | |a (DE-599)BVBBV043084474 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.14 |2 21 | |
100 | 1 | |a Burgess, Mark |e Verfasser |4 aut | |
245 | 1 | 0 | |a Classical covariant fields |c Mark Burgess |
264 | 1 | |a Cambridge, U.K. |b Cambridge University Press |c 2002 | |
300 | |a 1 Online-Ressource (xx, 529 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on mathematical physics | |
500 | |a Includes bibliographical references (pages 515-519) and index | ||
500 | |a pt. 1 - Fields - 1 - Introduction - 2 - The electromagnetic field - 3 - Field parameters - 4 - The action principle - 5 - Classical field dynamics - 6 - Statistical interpretation of the field - 7 - Examples and applications -- - pt. 2 - Groups and fields - 8 - Field transformations - 9 - Spacetime transformations - 10 - Kinematical and dynamical transformations - 11 - Position and momentum - 12 - Charge and current - 13 - The non-relativistic limit - 14 - Unified kinematics and dynamics - 15 - Epilogue: quantum field theory -- - pt. 3 - Reference: a compendium of fields - 16 - Gallery of definitions - 17 - The Schrodinger field - 18 - The real Klein-Gordon field - 19 - The complex Klein-Gordon field - 20 - The Dirac field - 21 - The Maxwell radiation field | ||
500 | |a "This book discusses the classical foundations of field theory, using the language of variational methods and covariance. There is no other book which gives such a comprehensive overview of the subject, exploring the limits of what can be achieved with purely classical notions. These classical notions have a deep and important connection with the second quantized field theory, which is shown to follow on from the Schwinger Action Principle. The book takes a pragmatic view of field theory, focusing on issues which are usually omitted from quantum field theory texts. It uses a well documented set of conventions and catalogues results which are often hard to find in the literature | ||
500 | |a Care is taken to explain how results arise and how to interpret results physically, for graduate students starting out in the field. Many physical examples are provided, making the book an ideal supplementary text for courses on elementary field theory, group theory and dynamical systems. It will also be a valuable reference for researchers already working in these and related areas."--Jacket | ||
650 | 4 | |a Champs, Théorie des (Physique) | |
650 | 7 | |a SCIENCE / Waves & Wave Mechanics |2 bisacsh | |
650 | 7 | |a Feldtheorie |2 swd | |
650 | 7 | |a Mathematische Physik |2 swd | |
650 | 4 | |a Field theory (Physics) | |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Feldtheorie |0 (DE-588)4016698-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Feldtheorie |0 (DE-588)4016698-3 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=78359 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028508666 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=78359 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=78359 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175479422320640 |
---|---|
any_adam_object | |
author | Burgess, Mark |
author_facet | Burgess, Mark |
author_role | aut |
author_sort | Burgess, Mark |
author_variant | m b mb |
building | Verbundindex |
bvnumber | BV043084474 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)52568841 (DE-599)BVBBV043084474 |
dewey-full | 530.14 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14 |
dewey-search | 530.14 |
dewey-sort | 3530.14 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04083nmm a2200565zc 4500</leader><controlfield tag="001">BV043084474</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511019424</subfield><subfield code="9">0-511-01942-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511535058</subfield><subfield code="9">0-511-53505-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521813638</subfield><subfield code="9">0-521-81363-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511019425</subfield><subfield code="9">978-0-511-01942-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511535055</subfield><subfield code="9">978-0-511-53505-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521813631</subfield><subfield code="9">978-0-521-81363-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52568841</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043084474</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.14</subfield><subfield code="2">21</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burgess, Mark</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical covariant fields</subfield><subfield code="c">Mark Burgess</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, U.K.</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xx, 529 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 515-519) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">pt. 1 - Fields - 1 - Introduction - 2 - The electromagnetic field - 3 - Field parameters - 4 - The action principle - 5 - Classical field dynamics - 6 - Statistical interpretation of the field - 7 - Examples and applications -- - pt. 2 - Groups and fields - 8 - Field transformations - 9 - Spacetime transformations - 10 - Kinematical and dynamical transformations - 11 - Position and momentum - 12 - Charge and current - 13 - The non-relativistic limit - 14 - Unified kinematics and dynamics - 15 - Epilogue: quantum field theory -- - pt. 3 - Reference: a compendium of fields - 16 - Gallery of definitions - 17 - The Schrodinger field - 18 - The real Klein-Gordon field - 19 - The complex Klein-Gordon field - 20 - The Dirac field - 21 - The Maxwell radiation field</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"This book discusses the classical foundations of field theory, using the language of variational methods and covariance. There is no other book which gives such a comprehensive overview of the subject, exploring the limits of what can be achieved with purely classical notions. These classical notions have a deep and important connection with the second quantized field theory, which is shown to follow on from the Schwinger Action Principle. The book takes a pragmatic view of field theory, focusing on issues which are usually omitted from quantum field theory texts. It uses a well documented set of conventions and catalogues results which are often hard to find in the literature</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Care is taken to explain how results arise and how to interpret results physically, for graduate students starting out in the field. Many physical examples are provided, making the book an ideal supplementary text for courses on elementary field theory, group theory and dynamical systems. It will also be a valuable reference for researchers already working in these and related areas."--Jacket</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Champs, Théorie des (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Waves & Wave Mechanics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feldtheorie</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field theory (Physics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Feldtheorie</subfield><subfield code="0">(DE-588)4016698-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Feldtheorie</subfield><subfield code="0">(DE-588)4016698-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=78359</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028508666</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=78359</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=78359</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043084474 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:56Z |
institution | BVB |
isbn | 0511019424 0511535058 0521813638 9780511019425 9780511535055 9780521813631 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028508666 |
oclc_num | 52568841 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xx, 529 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on mathematical physics |
spelling | Burgess, Mark Verfasser aut Classical covariant fields Mark Burgess Cambridge, U.K. Cambridge University Press 2002 1 Online-Ressource (xx, 529 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on mathematical physics Includes bibliographical references (pages 515-519) and index pt. 1 - Fields - 1 - Introduction - 2 - The electromagnetic field - 3 - Field parameters - 4 - The action principle - 5 - Classical field dynamics - 6 - Statistical interpretation of the field - 7 - Examples and applications -- - pt. 2 - Groups and fields - 8 - Field transformations - 9 - Spacetime transformations - 10 - Kinematical and dynamical transformations - 11 - Position and momentum - 12 - Charge and current - 13 - The non-relativistic limit - 14 - Unified kinematics and dynamics - 15 - Epilogue: quantum field theory -- - pt. 3 - Reference: a compendium of fields - 16 - Gallery of definitions - 17 - The Schrodinger field - 18 - The real Klein-Gordon field - 19 - The complex Klein-Gordon field - 20 - The Dirac field - 21 - The Maxwell radiation field "This book discusses the classical foundations of field theory, using the language of variational methods and covariance. There is no other book which gives such a comprehensive overview of the subject, exploring the limits of what can be achieved with purely classical notions. These classical notions have a deep and important connection with the second quantized field theory, which is shown to follow on from the Schwinger Action Principle. The book takes a pragmatic view of field theory, focusing on issues which are usually omitted from quantum field theory texts. It uses a well documented set of conventions and catalogues results which are often hard to find in the literature Care is taken to explain how results arise and how to interpret results physically, for graduate students starting out in the field. Many physical examples are provided, making the book an ideal supplementary text for courses on elementary field theory, group theory and dynamical systems. It will also be a valuable reference for researchers already working in these and related areas."--Jacket Champs, Théorie des (Physique) SCIENCE / Waves & Wave Mechanics bisacsh Feldtheorie swd Mathematische Physik swd Field theory (Physics) Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Feldtheorie (DE-588)4016698-3 gnd rswk-swf Feldtheorie (DE-588)4016698-3 s Mathematische Physik (DE-588)4037952-8 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=78359 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Burgess, Mark Classical covariant fields Champs, Théorie des (Physique) SCIENCE / Waves & Wave Mechanics bisacsh Feldtheorie swd Mathematische Physik swd Field theory (Physics) Mathematische Physik (DE-588)4037952-8 gnd Feldtheorie (DE-588)4016698-3 gnd |
subject_GND | (DE-588)4037952-8 (DE-588)4016698-3 |
title | Classical covariant fields |
title_auth | Classical covariant fields |
title_exact_search | Classical covariant fields |
title_full | Classical covariant fields Mark Burgess |
title_fullStr | Classical covariant fields Mark Burgess |
title_full_unstemmed | Classical covariant fields Mark Burgess |
title_short | Classical covariant fields |
title_sort | classical covariant fields |
topic | Champs, Théorie des (Physique) SCIENCE / Waves & Wave Mechanics bisacsh Feldtheorie swd Mathematische Physik swd Field theory (Physics) Mathematische Physik (DE-588)4037952-8 gnd Feldtheorie (DE-588)4016698-3 gnd |
topic_facet | Champs, Théorie des (Physique) SCIENCE / Waves & Wave Mechanics Feldtheorie Mathematische Physik Field theory (Physics) |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=78359 |
work_keys_str_mv | AT burgessmark classicalcovariantfields |