Getting acquainted with fractals:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
Walter de Gruyter
2007
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references The first instance of pre-computer fractals was noted by the French mathematician Gaston Julia. He wondered what a complex polynomial function would look like, such as the ones named after him (in the form of z2 + c, where c is a complex constant with real and imaginary parts). The idea behind this formula is that one takes the x and y coordinates of a point z, and plug them into z in the form of x + i*y, where i is the square root of -1, square this number, and then add c, a constant. Then plug the resulting pair of real and imaginary numbers back into z, run the operation again, and keep doi FRACTALS AND DIMENSIONS: The game of deleting and replacing -- The box-counting dimension -- The Hausdorff dimension -- ITERATIVE FUNCTION SYSTEMS: The space of compact subsets of a complete metric space -- Contractions in a complete metric space -- Affine iterative functions in R² -- ITERATION OF COMPLEX POLYNOMIALS: General theory of Julia sets -- Julia sets for quadratic polynomials -- The Mandelbrot set -- Generation of Julia sets |
Beschreibung: | 1 Online-Ressource (177 pages) |
ISBN: | 1282196650 3110206617 9781282196650 9783110206616 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043083889 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2007 |||| o||u| ||||||eng d | ||
020 | |a 1282196650 |9 1-282-19665-0 | ||
020 | |a 3110206617 |c electronic bk. |9 3-11-020661-7 | ||
020 | |a 9781282196650 |9 978-1-282-19665-0 | ||
020 | |a 9783110206616 |c electronic bk. |9 978-3-11-020661-6 | ||
035 | |a (OCoLC)471131227 | ||
035 | |a (DE-599)BVBBV043083889 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 514/.742 |2 22 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
100 | 1 | |a Helmberg, Gilbert |e Verfasser |4 aut | |
245 | 1 | 0 | |a Getting acquainted with fractals |c by Gilbert Helmberg |
264 | 1 | |a Berlin |b Walter de Gruyter |c 2007 | |
300 | |a 1 Online-Ressource (177 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references | ||
500 | |a The first instance of pre-computer fractals was noted by the French mathematician Gaston Julia. He wondered what a complex polynomial function would look like, such as the ones named after him (in the form of z2 + c, where c is a complex constant with real and imaginary parts). The idea behind this formula is that one takes the x and y coordinates of a point z, and plug them into z in the form of x + i*y, where i is the square root of -1, square this number, and then add c, a constant. Then plug the resulting pair of real and imaginary numbers back into z, run the operation again, and keep doi | ||
500 | |a FRACTALS AND DIMENSIONS: The game of deleting and replacing -- The box-counting dimension -- The Hausdorff dimension -- ITERATIVE FUNCTION SYSTEMS: The space of compact subsets of a complete metric space -- Contractions in a complete metric space -- Affine iterative functions in R² -- ITERATION OF COMPLEX POLYNOMIALS: General theory of Julia sets -- Julia sets for quadratic polynomials -- The Mandelbrot set -- Generation of Julia sets | ||
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 7 | |a Fractals |2 fast | |
650 | 7 | |a Geometry |2 fast | |
650 | 7 | |a Fraktal |2 swd | |
650 | 4 | |a Fractals | |
650 | 4 | |a Geometry | |
650 | 0 | 7 | |a Fraktal |0 (DE-588)4123220-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-11-019092-2 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=281608 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028508081 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=281608 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=281608 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175478264692736 |
---|---|
any_adam_object | |
author | Helmberg, Gilbert |
author_facet | Helmberg, Gilbert |
author_role | aut |
author_sort | Helmberg, Gilbert |
author_variant | g h gh |
building | Verbundindex |
bvnumber | BV043083889 |
classification_rvk | SK 380 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)471131227 (DE-599)BVBBV043083889 |
dewey-full | 514/.742 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.742 |
dewey-search | 514/.742 |
dewey-sort | 3514 3742 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03056nmm a2200529zc 4500</leader><controlfield tag="001">BV043083889</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282196650</subfield><subfield code="9">1-282-19665-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110206617</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">3-11-020661-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282196650</subfield><subfield code="9">978-1-282-19665-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110206616</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-3-11-020661-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)471131227</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043083889</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.742</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Helmberg, Gilbert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Getting acquainted with fractals</subfield><subfield code="c">by Gilbert Helmberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Walter de Gruyter</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (177 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The first instance of pre-computer fractals was noted by the French mathematician Gaston Julia. He wondered what a complex polynomial function would look like, such as the ones named after him (in the form of z2 + c, where c is a complex constant with real and imaginary parts). The idea behind this formula is that one takes the x and y coordinates of a point z, and plug them into z in the form of x + i*y, where i is the square root of -1, square this number, and then add c, a constant. Then plug the resulting pair of real and imaginary numbers back into z, run the operation again, and keep doi</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">FRACTALS AND DIMENSIONS: The game of deleting and replacing -- The box-counting dimension -- The Hausdorff dimension -- ITERATIVE FUNCTION SYSTEMS: The space of compact subsets of a complete metric space -- Contractions in a complete metric space -- Affine iterative functions in R² -- ITERATION OF COMPLEX POLYNOMIALS: General theory of Julia sets -- Julia sets for quadratic polynomials -- The Mandelbrot set -- Generation of Julia sets</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fractals</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fraktal</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-11-019092-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=281608</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028508081</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=281608</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=281608</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043083889 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:55Z |
institution | BVB |
isbn | 1282196650 3110206617 9781282196650 9783110206616 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028508081 |
oclc_num | 471131227 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (177 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Walter de Gruyter |
record_format | marc |
spelling | Helmberg, Gilbert Verfasser aut Getting acquainted with fractals by Gilbert Helmberg Berlin Walter de Gruyter 2007 1 Online-Ressource (177 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references The first instance of pre-computer fractals was noted by the French mathematician Gaston Julia. He wondered what a complex polynomial function would look like, such as the ones named after him (in the form of z2 + c, where c is a complex constant with real and imaginary parts). The idea behind this formula is that one takes the x and y coordinates of a point z, and plug them into z in the form of x + i*y, where i is the square root of -1, square this number, and then add c, a constant. Then plug the resulting pair of real and imaginary numbers back into z, run the operation again, and keep doi FRACTALS AND DIMENSIONS: The game of deleting and replacing -- The box-counting dimension -- The Hausdorff dimension -- ITERATIVE FUNCTION SYSTEMS: The space of compact subsets of a complete metric space -- Contractions in a complete metric space -- Affine iterative functions in R² -- ITERATION OF COMPLEX POLYNOMIALS: General theory of Julia sets -- Julia sets for quadratic polynomials -- The Mandelbrot set -- Generation of Julia sets MATHEMATICS / Topology bisacsh Fractals fast Geometry fast Fraktal swd Fractals Geometry Fraktal (DE-588)4123220-3 gnd rswk-swf Fraktal (DE-588)4123220-3 s 1\p DE-604 Erscheint auch als Druckausgabe 978-3-11-019092-2 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=281608 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Helmberg, Gilbert Getting acquainted with fractals MATHEMATICS / Topology bisacsh Fractals fast Geometry fast Fraktal swd Fractals Geometry Fraktal (DE-588)4123220-3 gnd |
subject_GND | (DE-588)4123220-3 |
title | Getting acquainted with fractals |
title_auth | Getting acquainted with fractals |
title_exact_search | Getting acquainted with fractals |
title_full | Getting acquainted with fractals by Gilbert Helmberg |
title_fullStr | Getting acquainted with fractals by Gilbert Helmberg |
title_full_unstemmed | Getting acquainted with fractals by Gilbert Helmberg |
title_short | Getting acquainted with fractals |
title_sort | getting acquainted with fractals |
topic | MATHEMATICS / Topology bisacsh Fractals fast Geometry fast Fraktal swd Fractals Geometry Fraktal (DE-588)4123220-3 gnd |
topic_facet | MATHEMATICS / Topology Fractals Geometry Fraktal |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=281608 |
work_keys_str_mv | AT helmberggilbert gettingacquaintedwithfractals |