Applications of contact geometry and topology in physics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Hackensack] New Jersey
World Scientific
2013
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index Ch. 1. Motivation and background. 1.1. General information. 1.2. Fluid mechanics formulation of Hamiltonian and Jacobian mechanics. Emergence of the force-free fields. 1.3. Some basic facts about the force-free fields -- ch. 2. From ideal magnetohydrodynamics to string and knot theory. 2.1. General information. 2.2. The Gillbarg problem and the theory of foliations. 2.3. From string-theoretic Lund-Regge equation to Landau-Lifshitz equation for the vortex filament. 2.4. Foliations of R[symbol] by the Maxwellian surfaces. 2.5. The Maxwellian tori and the torus knots associated with them -- - ch. 3. All about and around Woltjer's theorem. 3.1. General information. 3.2. Equilibria in liquid crystals and the Faddeev-Skyrme model for pure Yang-Mills fields. 3.3. Refinements of Woltjer's theorem. Implications for magnetohydrodynamics, superconductivity and liquid crystals. 3.4. Proca's massive electrodynamics and Stueckelberg's trick. 3.5. New interpretation of the Dirac monopole and its use in the problem of quark confinement -- ch. 4. Topologically massive gauge theories and the force-free fields -- ch. 5. Contact geometry and physics. 5.1. General information. 5.2. Some basic facts about contact geometry and topology. 5.3. Contact geometry of thermodynamics. 5.4. Contact and symplectic geometry and liquid crystals. 5.5. Force-free (Beltrami) fields and contact geometry and topology of hydrodynamics and electromagnetism. 5.6. Many facets of the Abelian Chern-Simons functional and their relation to monopoles, dyons and the Faddeev-Skyrme model -- - ch. 6. Sub-Riemannian geometry, Heisenberg manifolds and quantum mechanics of Landau levels. 6.1. Motivation. 6.2. The benchmark example. 6.3. Basics of sub-Riemannian geometry. 6.4. Glimpses of quantum mechanics. 6.5. Fiber bundle reformulation of sub-Riemannian geometry and classical-quantum correspondence. Connection with Dirac monopoles -- ch. 7. Abrikosov lattices, TGB phases in liquid crystals and Heisenberg group -- ch. 8. Sub-Riemannian geometry, spin dynamics and quantum-classical optimal control. 8.1. General information. 8.2. Quantum computers paradigm and dynamics of 2-level quantum systems. 8.3. Beyond the 2-level quantum systems. 8.4. Semiflexible polymers and quantum computers -- - ch. 9. From contact geometry to contact topology. 9.1. General information. 9.2. Mathematics and physics of the Cauchy problem in quantum mechanics: Viktor Maslov versus David Bohm. 9.3. From Maslov and Bohm to Bell and beyond. 9.4. Harmonious coexistence of classical and quantum mechanics: all about and around the Duistermaat-Heckman formula. 9.5. Mathematics and physics of Weinstein's conjecture: from classical statistical mechanics to Seiberg-Witten monopoles. 9.6. Quantum money, Lagrangian, Legendrian and transverse knots and links and the associated grid diagrams. 9.7. Latest developments in contact geometry and topology. A guided tour with physics applications in the perspective Although contact geometry and topology is briefly discussed in V I Arnold's book "Mathematical Methods of Classical Mechanics" (Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges "An Introduction to Contact Topology" (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph "Contact Geometry and Nonlinear Differential Equations" (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau-Lifshitz (L-L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L-L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L-L course some problems/exercises are formulated along the way and, again as in the L-L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L-L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text |
Beschreibung: | 1 Online-Ressource (pages cm.) |
ISBN: | 9789814412087 9789814412094 9814412082 9814412090 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043083661 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2013 |||| o||u| ||||||eng d | ||
020 | |a 9789814412087 |9 978-981-4412-08-7 | ||
020 | |a 9789814412094 |c electronic bk. |9 978-981-4412-09-4 | ||
020 | |a 9814412082 |9 981-4412-08-2 | ||
020 | |a 9814412090 |c electronic bk. |9 981-4412-09-0 | ||
035 | |a (OCoLC)847526798 | ||
035 | |a (DE-599)BVBBV043083661 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.15/636 |2 23 | |
100 | 1 | |a Kholodenko, Arkady Leonidovich |e Verfasser |4 aut | |
245 | 1 | 0 | |a Applications of contact geometry and topology in physics |c by Arkady L Kholodenko (Clemson University, USA) |
264 | 1 | |a [Hackensack] New Jersey |b World Scientific |c 2013 | |
300 | |a 1 Online-Ressource (pages cm.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Ch. 1. Motivation and background. 1.1. General information. 1.2. Fluid mechanics formulation of Hamiltonian and Jacobian mechanics. Emergence of the force-free fields. 1.3. Some basic facts about the force-free fields -- ch. 2. From ideal magnetohydrodynamics to string and knot theory. 2.1. General information. 2.2. The Gillbarg problem and the theory of foliations. 2.3. From string-theoretic Lund-Regge equation to Landau-Lifshitz equation for the vortex filament. 2.4. Foliations of R[symbol] by the Maxwellian surfaces. 2.5. The Maxwellian tori and the torus knots associated with them -- | ||
500 | |a - ch. 3. All about and around Woltjer's theorem. 3.1. General information. 3.2. Equilibria in liquid crystals and the Faddeev-Skyrme model for pure Yang-Mills fields. 3.3. Refinements of Woltjer's theorem. Implications for magnetohydrodynamics, superconductivity and liquid crystals. 3.4. Proca's massive electrodynamics and Stueckelberg's trick. 3.5. New interpretation of the Dirac monopole and its use in the problem of quark confinement -- ch. 4. Topologically massive gauge theories and the force-free fields -- ch. 5. Contact geometry and physics. 5.1. General information. 5.2. Some basic facts about contact geometry and topology. 5.3. Contact geometry of thermodynamics. 5.4. Contact and symplectic geometry and liquid crystals. 5.5. Force-free (Beltrami) fields and contact geometry and topology of hydrodynamics and electromagnetism. 5.6. Many facets of the Abelian Chern-Simons functional and their relation to monopoles, dyons and the Faddeev-Skyrme model -- | ||
500 | |a - ch. 6. Sub-Riemannian geometry, Heisenberg manifolds and quantum mechanics of Landau levels. 6.1. Motivation. 6.2. The benchmark example. 6.3. Basics of sub-Riemannian geometry. 6.4. Glimpses of quantum mechanics. 6.5. Fiber bundle reformulation of sub-Riemannian geometry and classical-quantum correspondence. Connection with Dirac monopoles -- ch. 7. Abrikosov lattices, TGB phases in liquid crystals and Heisenberg group -- ch. 8. Sub-Riemannian geometry, spin dynamics and quantum-classical optimal control. 8.1. General information. 8.2. Quantum computers paradigm and dynamics of 2-level quantum systems. 8.3. Beyond the 2-level quantum systems. 8.4. Semiflexible polymers and quantum computers -- | ||
500 | |a - ch. 9. From contact geometry to contact topology. 9.1. General information. 9.2. Mathematics and physics of the Cauchy problem in quantum mechanics: Viktor Maslov versus David Bohm. 9.3. From Maslov and Bohm to Bell and beyond. 9.4. Harmonious coexistence of classical and quantum mechanics: all about and around the Duistermaat-Heckman formula. 9.5. Mathematics and physics of Weinstein's conjecture: from classical statistical mechanics to Seiberg-Witten monopoles. 9.6. Quantum money, Lagrangian, Legendrian and transverse knots and links and the associated grid diagrams. 9.7. Latest developments in contact geometry and topology. A guided tour with physics applications in the perspective | ||
500 | |a Although contact geometry and topology is briefly discussed in V I Arnold's book "Mathematical Methods of Classical Mechanics" (Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges "An Introduction to Contact Topology" (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph "Contact Geometry and Nonlinear Differential Equations" (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau-Lifshitz (L-L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L-L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L-L course some problems/exercises are formulated along the way and, again as in the L-L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L-L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text | ||
650 | 7 | |a SCIENCE / Physics / Mathematical & Computational |2 bisacsh | |
650 | 7 | |a Geometry |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 7 | |a Topology |2 fast | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Geometry | |
650 | 4 | |a Topology | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | 2 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592586 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028507853 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592586 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592586 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175477815902208 |
---|---|
any_adam_object | |
author | Kholodenko, Arkady Leonidovich |
author_facet | Kholodenko, Arkady Leonidovich |
author_role | aut |
author_sort | Kholodenko, Arkady Leonidovich |
author_variant | a l k al alk |
building | Verbundindex |
bvnumber | BV043083661 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)847526798 (DE-599)BVBBV043083661 |
dewey-full | 530.15/636 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15/636 |
dewey-search | 530.15/636 |
dewey-sort | 3530.15 3636 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07202nmm a2200613zc 4500</leader><controlfield tag="001">BV043083661</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814412087</subfield><subfield code="9">978-981-4412-08-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814412094</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4412-09-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814412082</subfield><subfield code="9">981-4412-08-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814412090</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4412-09-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)847526798</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043083661</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15/636</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kholodenko, Arkady Leonidovich</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applications of contact geometry and topology in physics</subfield><subfield code="c">by Arkady L Kholodenko (Clemson University, USA)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Hackensack] New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (pages cm.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Ch. 1. Motivation and background. 1.1. General information. 1.2. Fluid mechanics formulation of Hamiltonian and Jacobian mechanics. Emergence of the force-free fields. 1.3. Some basic facts about the force-free fields -- ch. 2. From ideal magnetohydrodynamics to string and knot theory. 2.1. General information. 2.2. The Gillbarg problem and the theory of foliations. 2.3. From string-theoretic Lund-Regge equation to Landau-Lifshitz equation for the vortex filament. 2.4. Foliations of R[symbol] by the Maxwellian surfaces. 2.5. The Maxwellian tori and the torus knots associated with them -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - ch. 3. All about and around Woltjer's theorem. 3.1. General information. 3.2. Equilibria in liquid crystals and the Faddeev-Skyrme model for pure Yang-Mills fields. 3.3. Refinements of Woltjer's theorem. Implications for magnetohydrodynamics, superconductivity and liquid crystals. 3.4. Proca's massive electrodynamics and Stueckelberg's trick. 3.5. New interpretation of the Dirac monopole and its use in the problem of quark confinement -- ch. 4. Topologically massive gauge theories and the force-free fields -- ch. 5. Contact geometry and physics. 5.1. General information. 5.2. Some basic facts about contact geometry and topology. 5.3. Contact geometry of thermodynamics. 5.4. Contact and symplectic geometry and liquid crystals. 5.5. Force-free (Beltrami) fields and contact geometry and topology of hydrodynamics and electromagnetism. 5.6. Many facets of the Abelian Chern-Simons functional and their relation to monopoles, dyons and the Faddeev-Skyrme model -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - ch. 6. Sub-Riemannian geometry, Heisenberg manifolds and quantum mechanics of Landau levels. 6.1. Motivation. 6.2. The benchmark example. 6.3. Basics of sub-Riemannian geometry. 6.4. Glimpses of quantum mechanics. 6.5. Fiber bundle reformulation of sub-Riemannian geometry and classical-quantum correspondence. Connection with Dirac monopoles -- ch. 7. Abrikosov lattices, TGB phases in liquid crystals and Heisenberg group -- ch. 8. Sub-Riemannian geometry, spin dynamics and quantum-classical optimal control. 8.1. General information. 8.2. Quantum computers paradigm and dynamics of 2-level quantum systems. 8.3. Beyond the 2-level quantum systems. 8.4. Semiflexible polymers and quantum computers -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - ch. 9. From contact geometry to contact topology. 9.1. General information. 9.2. Mathematics and physics of the Cauchy problem in quantum mechanics: Viktor Maslov versus David Bohm. 9.3. From Maslov and Bohm to Bell and beyond. 9.4. Harmonious coexistence of classical and quantum mechanics: all about and around the Duistermaat-Heckman formula. 9.5. Mathematics and physics of Weinstein's conjecture: from classical statistical mechanics to Seiberg-Witten monopoles. 9.6. Quantum money, Lagrangian, Legendrian and transverse knots and links and the associated grid diagrams. 9.7. Latest developments in contact geometry and topology. A guided tour with physics applications in the perspective</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Although contact geometry and topology is briefly discussed in V I Arnold's book "Mathematical Methods of Classical Mechanics" (Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges "An Introduction to Contact Topology" (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph "Contact Geometry and Nonlinear Differential Equations" (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau-Lifshitz (L-L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L-L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L-L course some problems/exercises are formulated along the way and, again as in the L-L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L-L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / Mathematical & Computational</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topology</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592586</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028507853</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592586</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592586</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043083661 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:55Z |
institution | BVB |
isbn | 9789814412087 9789814412094 9814412082 9814412090 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028507853 |
oclc_num | 847526798 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (pages cm.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific |
record_format | marc |
spelling | Kholodenko, Arkady Leonidovich Verfasser aut Applications of contact geometry and topology in physics by Arkady L Kholodenko (Clemson University, USA) [Hackensack] New Jersey World Scientific 2013 1 Online-Ressource (pages cm.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index Ch. 1. Motivation and background. 1.1. General information. 1.2. Fluid mechanics formulation of Hamiltonian and Jacobian mechanics. Emergence of the force-free fields. 1.3. Some basic facts about the force-free fields -- ch. 2. From ideal magnetohydrodynamics to string and knot theory. 2.1. General information. 2.2. The Gillbarg problem and the theory of foliations. 2.3. From string-theoretic Lund-Regge equation to Landau-Lifshitz equation for the vortex filament. 2.4. Foliations of R[symbol] by the Maxwellian surfaces. 2.5. The Maxwellian tori and the torus knots associated with them -- - ch. 3. All about and around Woltjer's theorem. 3.1. General information. 3.2. Equilibria in liquid crystals and the Faddeev-Skyrme model for pure Yang-Mills fields. 3.3. Refinements of Woltjer's theorem. Implications for magnetohydrodynamics, superconductivity and liquid crystals. 3.4. Proca's massive electrodynamics and Stueckelberg's trick. 3.5. New interpretation of the Dirac monopole and its use in the problem of quark confinement -- ch. 4. Topologically massive gauge theories and the force-free fields -- ch. 5. Contact geometry and physics. 5.1. General information. 5.2. Some basic facts about contact geometry and topology. 5.3. Contact geometry of thermodynamics. 5.4. Contact and symplectic geometry and liquid crystals. 5.5. Force-free (Beltrami) fields and contact geometry and topology of hydrodynamics and electromagnetism. 5.6. Many facets of the Abelian Chern-Simons functional and their relation to monopoles, dyons and the Faddeev-Skyrme model -- - ch. 6. Sub-Riemannian geometry, Heisenberg manifolds and quantum mechanics of Landau levels. 6.1. Motivation. 6.2. The benchmark example. 6.3. Basics of sub-Riemannian geometry. 6.4. Glimpses of quantum mechanics. 6.5. Fiber bundle reformulation of sub-Riemannian geometry and classical-quantum correspondence. Connection with Dirac monopoles -- ch. 7. Abrikosov lattices, TGB phases in liquid crystals and Heisenberg group -- ch. 8. Sub-Riemannian geometry, spin dynamics and quantum-classical optimal control. 8.1. General information. 8.2. Quantum computers paradigm and dynamics of 2-level quantum systems. 8.3. Beyond the 2-level quantum systems. 8.4. Semiflexible polymers and quantum computers -- - ch. 9. From contact geometry to contact topology. 9.1. General information. 9.2. Mathematics and physics of the Cauchy problem in quantum mechanics: Viktor Maslov versus David Bohm. 9.3. From Maslov and Bohm to Bell and beyond. 9.4. Harmonious coexistence of classical and quantum mechanics: all about and around the Duistermaat-Heckman formula. 9.5. Mathematics and physics of Weinstein's conjecture: from classical statistical mechanics to Seiberg-Witten monopoles. 9.6. Quantum money, Lagrangian, Legendrian and transverse knots and links and the associated grid diagrams. 9.7. Latest developments in contact geometry and topology. A guided tour with physics applications in the perspective Although contact geometry and topology is briefly discussed in V I Arnold's book "Mathematical Methods of Classical Mechanics" (Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges "An Introduction to Contact Topology" (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph "Contact Geometry and Nonlinear Differential Equations" (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau-Lifshitz (L-L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L-L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L-L course some problems/exercises are formulated along the way and, again as in the L-L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L-L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text SCIENCE / Physics / Mathematical & Computational bisacsh Geometry fast Mathematical physics fast Topology fast Mathematische Physik Geometry Topology Mathematical physics Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Geometrie (DE-588)4020236-7 s Topologie (DE-588)4060425-1 s Mathematische Physik (DE-588)4037952-8 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592586 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kholodenko, Arkady Leonidovich Applications of contact geometry and topology in physics SCIENCE / Physics / Mathematical & Computational bisacsh Geometry fast Mathematical physics fast Topology fast Mathematische Physik Geometry Topology Mathematical physics Mathematische Physik (DE-588)4037952-8 gnd Geometrie (DE-588)4020236-7 gnd Topologie (DE-588)4060425-1 gnd |
subject_GND | (DE-588)4037952-8 (DE-588)4020236-7 (DE-588)4060425-1 |
title | Applications of contact geometry and topology in physics |
title_auth | Applications of contact geometry and topology in physics |
title_exact_search | Applications of contact geometry and topology in physics |
title_full | Applications of contact geometry and topology in physics by Arkady L Kholodenko (Clemson University, USA) |
title_fullStr | Applications of contact geometry and topology in physics by Arkady L Kholodenko (Clemson University, USA) |
title_full_unstemmed | Applications of contact geometry and topology in physics by Arkady L Kholodenko (Clemson University, USA) |
title_short | Applications of contact geometry and topology in physics |
title_sort | applications of contact geometry and topology in physics |
topic | SCIENCE / Physics / Mathematical & Computational bisacsh Geometry fast Mathematical physics fast Topology fast Mathematische Physik Geometry Topology Mathematical physics Mathematische Physik (DE-588)4037952-8 gnd Geometrie (DE-588)4020236-7 gnd Topologie (DE-588)4060425-1 gnd |
topic_facet | SCIENCE / Physics / Mathematical & Computational Geometry Mathematical physics Topology Mathematische Physik Geometrie Topologie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592586 |
work_keys_str_mv | AT kholodenkoarkadyleonidovich applicationsofcontactgeometryandtopologyinphysics |