Trigonometric sums in number theory and analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
Walter de Gruyter
c2004
|
Schriftenreihe: | De Gruyter expositions in mathematics
39 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. [539]-551) and index Preface; Basic Notation; Contents; Introduction; Chapter 1Trigonometric integrals; Chapter 2Rational trigonometric sums; Chapter 3Weyl sums; 4.1 The mean value theorem for the multiple trigonometricsum with equivalent variables of summation; Chapter 5Estimates for multiple trigonometric sums; Chapter 6Several applications; Chapter 7Special cases of the theory of multipletrigonometric sums; Chapter 8The Hilbert-Kamke problem and itsgeneralizations; Chapter 9The p-adic method in three problemsof number theory; Chapter 10Estimates of multiple trigonometric sums withprime numbers The book presents the theory of multiple trigonometric sums constructed by the authors. Following a unified approach, the authors obtain estimates for these sums similar to the classical I.M. Vinogradov's estimates and use them to solve several problems in analytic number theory. They investigate trigonometric integrals, which are often encountered in physics, mathematical statistics, and analysis, and present purely arithmetic results concerning the solvability of equations in integers |
Beschreibung: | 1 Online-Ressource (x, 554 p.) |
ISBN: | 3110197987 9783110197983 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043083615 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2004 |||| o||u| ||||||eng d | ||
020 | |a 3110197987 |c electronic bk. |9 3-11-019798-7 | ||
020 | |a 9783110197983 |c electronic bk. |9 978-3-11-019798-3 | ||
035 | |a (OCoLC)232160057 | ||
035 | |a (DE-599)BVBBV043083615 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512.7 |2 22 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
100 | 1 | |a Arkhipov, Gennadiĭ Ivanovich |e Verfasser |4 aut | |
240 | 1 | 0 | |a Teorii͡a kratnykh trigonometricheskikh summ |
245 | 1 | 0 | |a Trigonometric sums in number theory and analysis |c by G.I. Arkhipov, V.N. Chubarikov, A.A. Karatsuba |
264 | 1 | |a Berlin |b Walter de Gruyter |c c2004 | |
300 | |a 1 Online-Ressource (x, 554 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter expositions in mathematics |v 39 | |
500 | |a Includes bibliographical references (p. [539]-551) and index | ||
500 | |a Preface; Basic Notation; Contents; Introduction; Chapter 1Trigonometric integrals; Chapter 2Rational trigonometric sums; Chapter 3Weyl sums; 4.1 The mean value theorem for the multiple trigonometricsum with equivalent variables of summation; Chapter 5Estimates for multiple trigonometric sums; Chapter 6Several applications; Chapter 7Special cases of the theory of multipletrigonometric sums; Chapter 8The Hilbert-Kamke problem and itsgeneralizations; Chapter 9The p-adic method in three problemsof number theory; Chapter 10Estimates of multiple trigonometric sums withprime numbers | ||
500 | |a The book presents the theory of multiple trigonometric sums constructed by the authors. Following a unified approach, the authors obtain estimates for these sums similar to the classical I.M. Vinogradov's estimates and use them to solve several problems in analytic number theory. They investigate trigonometric integrals, which are often encountered in physics, mathematical statistics, and analysis, and present purely arithmetic results concerning the solvability of equations in integers | ||
650 | 4 | |a Sommes trigonométriques | |
650 | 7 | |a MATHEMATICS / Number Theory |2 bisacsh | |
650 | 7 | |a Trigonometric sums |2 fast | |
650 | 4 | |a Trigonometric sums | |
650 | 0 | 7 | |a Trigonometrisches Polynom |0 (DE-588)4806392-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Trigonometrisches Polynom |0 (DE-588)4806392-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Chubarikov, Vladimir Nikolaevich |e Sonstige |4 oth | |
700 | 1 | |a Karat͡suba, Anatoliĭ Alekseevich |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 3-11-016266-0 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=274365 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028507807 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=274365 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=274365 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175477739356160 |
---|---|
any_adam_object | |
author | Arkhipov, Gennadiĭ Ivanovich |
author_facet | Arkhipov, Gennadiĭ Ivanovich |
author_role | aut |
author_sort | Arkhipov, Gennadiĭ Ivanovich |
author_variant | g i a gi gia |
building | Verbundindex |
bvnumber | BV043083615 |
classification_rvk | SK 180 SK 450 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)232160057 (DE-599)BVBBV043083615 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03399nmm a2200541zcb4500</leader><controlfield tag="001">BV043083615</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110197987</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">3-11-019798-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110197983</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-3-11-019798-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)232160057</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043083615</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arkhipov, Gennadiĭ Ivanovich</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Teorii͡a kratnykh trigonometricheskikh summ</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Trigonometric sums in number theory and analysis</subfield><subfield code="c">by G.I. Arkhipov, V.N. Chubarikov, A.A. Karatsuba</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Walter de Gruyter</subfield><subfield code="c">c2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 554 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter expositions in mathematics</subfield><subfield code="v">39</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [539]-551) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface; Basic Notation; Contents; Introduction; Chapter 1Trigonometric integrals; Chapter 2Rational trigonometric sums; Chapter 3Weyl sums; 4.1 The mean value theorem for the multiple trigonometricsum with equivalent variables of summation; Chapter 5Estimates for multiple trigonometric sums; Chapter 6Several applications; Chapter 7Special cases of the theory of multipletrigonometric sums; Chapter 8The Hilbert-Kamke problem and itsgeneralizations; Chapter 9The p-adic method in three problemsof number theory; Chapter 10Estimates of multiple trigonometric sums withprime numbers</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The book presents the theory of multiple trigonometric sums constructed by the authors. Following a unified approach, the authors obtain estimates for these sums similar to the classical I.M. Vinogradov's estimates and use them to solve several problems in analytic number theory. They investigate trigonometric integrals, which are often encountered in physics, mathematical statistics, and analysis, and present purely arithmetic results concerning the solvability of equations in integers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sommes trigonométriques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Number Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Trigonometric sums</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trigonometric sums</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Trigonometrisches Polynom</subfield><subfield code="0">(DE-588)4806392-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Trigonometrisches Polynom</subfield><subfield code="0">(DE-588)4806392-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chubarikov, Vladimir Nikolaevich</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Karat͡suba, Anatoliĭ Alekseevich</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">3-11-016266-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=274365</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028507807</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=274365</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=274365</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043083615 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:55Z |
institution | BVB |
isbn | 3110197987 9783110197983 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028507807 |
oclc_num | 232160057 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (x, 554 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Walter de Gruyter |
record_format | marc |
series2 | De Gruyter expositions in mathematics |
spelling | Arkhipov, Gennadiĭ Ivanovich Verfasser aut Teorii͡a kratnykh trigonometricheskikh summ Trigonometric sums in number theory and analysis by G.I. Arkhipov, V.N. Chubarikov, A.A. Karatsuba Berlin Walter de Gruyter c2004 1 Online-Ressource (x, 554 p.) txt rdacontent c rdamedia cr rdacarrier De Gruyter expositions in mathematics 39 Includes bibliographical references (p. [539]-551) and index Preface; Basic Notation; Contents; Introduction; Chapter 1Trigonometric integrals; Chapter 2Rational trigonometric sums; Chapter 3Weyl sums; 4.1 The mean value theorem for the multiple trigonometricsum with equivalent variables of summation; Chapter 5Estimates for multiple trigonometric sums; Chapter 6Several applications; Chapter 7Special cases of the theory of multipletrigonometric sums; Chapter 8The Hilbert-Kamke problem and itsgeneralizations; Chapter 9The p-adic method in three problemsof number theory; Chapter 10Estimates of multiple trigonometric sums withprime numbers The book presents the theory of multiple trigonometric sums constructed by the authors. Following a unified approach, the authors obtain estimates for these sums similar to the classical I.M. Vinogradov's estimates and use them to solve several problems in analytic number theory. They investigate trigonometric integrals, which are often encountered in physics, mathematical statistics, and analysis, and present purely arithmetic results concerning the solvability of equations in integers Sommes trigonométriques MATHEMATICS / Number Theory bisacsh Trigonometric sums fast Trigonometric sums Trigonometrisches Polynom (DE-588)4806392-7 gnd rswk-swf Trigonometrisches Polynom (DE-588)4806392-7 s 1\p DE-604 Chubarikov, Vladimir Nikolaevich Sonstige oth Karat͡suba, Anatoliĭ Alekseevich Sonstige oth Erscheint auch als Druck-Ausgabe, Hardcover 3-11-016266-0 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=274365 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Arkhipov, Gennadiĭ Ivanovich Trigonometric sums in number theory and analysis Sommes trigonométriques MATHEMATICS / Number Theory bisacsh Trigonometric sums fast Trigonometric sums Trigonometrisches Polynom (DE-588)4806392-7 gnd |
subject_GND | (DE-588)4806392-7 |
title | Trigonometric sums in number theory and analysis |
title_alt | Teorii͡a kratnykh trigonometricheskikh summ |
title_auth | Trigonometric sums in number theory and analysis |
title_exact_search | Trigonometric sums in number theory and analysis |
title_full | Trigonometric sums in number theory and analysis by G.I. Arkhipov, V.N. Chubarikov, A.A. Karatsuba |
title_fullStr | Trigonometric sums in number theory and analysis by G.I. Arkhipov, V.N. Chubarikov, A.A. Karatsuba |
title_full_unstemmed | Trigonometric sums in number theory and analysis by G.I. Arkhipov, V.N. Chubarikov, A.A. Karatsuba |
title_short | Trigonometric sums in number theory and analysis |
title_sort | trigonometric sums in number theory and analysis |
topic | Sommes trigonométriques MATHEMATICS / Number Theory bisacsh Trigonometric sums fast Trigonometric sums Trigonometrisches Polynom (DE-588)4806392-7 gnd |
topic_facet | Sommes trigonométriques MATHEMATICS / Number Theory Trigonometric sums Trigonometrisches Polynom |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=274365 |
work_keys_str_mv | AT arkhipovgennadiiivanovich teoriiakratnykhtrigonometricheskikhsumm AT chubarikovvladimirnikolaevich teoriiakratnykhtrigonometricheskikhsumm AT karatsubaanatoliialekseevich teoriiakratnykhtrigonometricheskikhsumm AT arkhipovgennadiiivanovich trigonometricsumsinnumbertheoryandanalysis AT chubarikovvladimirnikolaevich trigonometricsumsinnumbertheoryandanalysis AT karatsubaanatoliialekseevich trigonometricsumsinnumbertheoryandanalysis |