Analytic number theory: an introductory course
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey
World Scientific
©2004
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 353-354) and indexes Cover -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Three problems -- 1.2 Asymmetric distribution of quadratic residues -- 1.3 The prime number theorem -- 1.4 Density of squarefree integers -- 1.5 The Riemann zeta function -- 1.6 Notes -- Chapter 2 Calculus of Arithmetic Functions -- 2.1 Arithmetic functions and convolution -- 2.2 Inverses -- 2.3 Convergence -- 2.4 Exponential mapping -- 2.4.1 The 1 function as an exponential -- 2.4.2 Powers and roots -- 2.5 Multiplicative functions -- 2.6 Notes -- Chapter 3 Summatory Functions -- 3.1 Generalities -- 3.2 Estimate of Q(x) 6x/2 -- 3.3 Riemann-Stieltjes integrals -- 3.4 Riemann-Stieltjes integrators -- 3.4.1 Convolution of integrators -- 3.4.2 Generalization of results on arithmetic functions -- 3.5 Stability -- 3.6 Dirichlets hyperbola method -- 3.7 Notes -- Chapter 4 The Distribution of Prime Numbers -- 4.1 General remarks -- 4.2 The Chebyshev function -- 4.3 Mertens estimates -- 4.4 Convergent sums over primes -- - 4.5 A lower estimate for Eulers function -- 4.6 Notes -- Chapter 5 An Elementary Proof of the P.N.T. -- 5.1 Selbergs formula -- 5.1.1 Features of Selbergs formula -- 5.2 Transformation of Selbergs formula -- 5.2.1 Calculus for R -- 5.3 Deduction of the P.N.T. -- 5.4 Propositions 8220;equivalent to the P.N.T. -- 5.5 Some consequences of the P.N.T. -- 5.6 Notes -- Chapter 6 Dirichlet Series and Mellin Transforms -- 6.1 The use of transforms -- 6.2 Euler products -- 6.3 Convergence -- 6.3.1 Abscissa of convergence -- 6.3.2 Abscissa of absolute convergence -- 6.4 Uniform convergence -- 6.5 Analyticity -- 6.5.1 Analytic continuation -- 6.5.2 Continuation of zeta -- 6.5.3 Example of analyticity on = -- 6.6 Uniqueness -- 6.6.1 Identifying an arithmetic function -- 6.7 Operational calculus -- 6.8 Landau's oscillation theorem -- 6.9 Notes -- Chapter 7 Inversion Formulas -- 7.1 The use of inversion formulas -- 7.2 The Wiener-Ikehara theorem -- 7.2.1 Example. Counting product representations -- - 7.2.2 An O-estimate -- 7.3 A Wiener-Ikehara proof of the P.N.T. -- 7.4 A generalization of the Wiener-Ikehara theorem -- 7.5 The Perron formula -- 7.6 Proof of the Perron formula -- 7.7 Contour deformation in the Perron formula -- 7.7.1 The Fourier series of the sawtooth function -- 7.7.2 Bounded and uniform convergence -- 7.8 A "smoothed" Perron formula -- 7.9 Example. Estimation of [sigma]T(1₂ * 1₃) -- 7.10 Notes -- Chapter 8 The Riemann Zeta Function -- Chapter 9 Primes in Arithmetic Progressions -- Chapter 10 Applications of characters -- Chapter 11 Oscillation theorems -- Chapter 12 Sieves -- Chapter 13 Application of Sieves -- Appendix A. Results from Analysis and Algebra This valuable book focuses on a collection of powerful methods ofanalysis that yield deep number-theoretical estimates. Particularattention is given to counting functions of prime numbers andmultiplicative arithmetic functions. Both real variable ("elementary")and complex variable ("analytic") methods are employed |
Beschreibung: | 1 Online-Ressource (xiii, 360 pages) |
ISBN: | 9789812389381 9789812560803 9789812562272 9812389385 9812560807 9812562273 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043082034 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2004 |||| o||u| ||||||eng d | ||
020 | |a 9789812389381 |9 978-981-238-938-1 | ||
020 | |a 9789812560803 |9 978-981-256-080-3 | ||
020 | |a 9789812562272 |9 978-981-256-227-2 | ||
020 | |a 9812389385 |9 981-238-938-5 | ||
020 | |a 9812389385 |9 981-238-938-5 | ||
020 | |a 9812560807 |9 981-256-080-7 | ||
020 | |a 9812560807 |9 981-256-080-7 | ||
020 | |a 9812562273 |9 981-256-227-3 | ||
035 | |a (OCoLC)61482715 | ||
035 | |a (DE-599)BVBBV043082034 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512.73 |2 22 | |
100 | 1 | |a Bateman, P. T. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Analytic number theory |b an introductory course |c Paul T. Bateman, Harold G. Diamond |
264 | 1 | |a New Jersey |b World Scientific |c ©2004 | |
300 | |a 1 Online-Ressource (xiii, 360 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 353-354) and indexes | ||
500 | |a Cover -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Three problems -- 1.2 Asymmetric distribution of quadratic residues -- 1.3 The prime number theorem -- 1.4 Density of squarefree integers -- 1.5 The Riemann zeta function -- 1.6 Notes -- Chapter 2 Calculus of Arithmetic Functions -- 2.1 Arithmetic functions and convolution -- 2.2 Inverses -- 2.3 Convergence -- 2.4 Exponential mapping -- 2.4.1 The 1 function as an exponential -- 2.4.2 Powers and roots -- 2.5 Multiplicative functions -- 2.6 Notes -- Chapter 3 Summatory Functions -- 3.1 Generalities -- 3.2 Estimate of Q(x) 6x/2 -- 3.3 Riemann-Stieltjes integrals -- 3.4 Riemann-Stieltjes integrators -- 3.4.1 Convolution of integrators -- 3.4.2 Generalization of results on arithmetic functions -- 3.5 Stability -- 3.6 Dirichlets hyperbola method -- 3.7 Notes -- Chapter 4 The Distribution of Prime Numbers -- 4.1 General remarks -- 4.2 The Chebyshev function -- 4.3 Mertens estimates -- 4.4 Convergent sums over primes -- | ||
500 | |a - 4.5 A lower estimate for Eulers function -- 4.6 Notes -- Chapter 5 An Elementary Proof of the P.N.T. -- 5.1 Selbergs formula -- 5.1.1 Features of Selbergs formula -- 5.2 Transformation of Selbergs formula -- 5.2.1 Calculus for R -- 5.3 Deduction of the P.N.T. -- 5.4 Propositions 8220;equivalent to the P.N.T. -- 5.5 Some consequences of the P.N.T. -- 5.6 Notes -- Chapter 6 Dirichlet Series and Mellin Transforms -- 6.1 The use of transforms -- 6.2 Euler products -- 6.3 Convergence -- 6.3.1 Abscissa of convergence -- 6.3.2 Abscissa of absolute convergence -- 6.4 Uniform convergence -- 6.5 Analyticity -- 6.5.1 Analytic continuation -- 6.5.2 Continuation of zeta -- 6.5.3 Example of analyticity on = -- 6.6 Uniqueness -- 6.6.1 Identifying an arithmetic function -- 6.7 Operational calculus -- 6.8 Landau's oscillation theorem -- 6.9 Notes -- Chapter 7 Inversion Formulas -- 7.1 The use of inversion formulas -- 7.2 The Wiener-Ikehara theorem -- 7.2.1 Example. Counting product representations -- | ||
500 | |a - 7.2.2 An O-estimate -- 7.3 A Wiener-Ikehara proof of the P.N.T. -- 7.4 A generalization of the Wiener-Ikehara theorem -- 7.5 The Perron formula -- 7.6 Proof of the Perron formula -- 7.7 Contour deformation in the Perron formula -- 7.7.1 The Fourier series of the sawtooth function -- 7.7.2 Bounded and uniform convergence -- 7.8 A "smoothed" Perron formula -- 7.9 Example. Estimation of [sigma]T(1₂ * 1₃) -- 7.10 Notes -- Chapter 8 The Riemann Zeta Function -- Chapter 9 Primes in Arithmetic Progressions -- Chapter 10 Applications of characters -- Chapter 11 Oscillation theorems -- Chapter 12 Sieves -- Chapter 13 Application of Sieves -- Appendix A. Results from Analysis and Algebra | ||
500 | |a This valuable book focuses on a collection of powerful methods ofanalysis that yield deep number-theoretical estimates. Particularattention is given to counting functions of prime numbers andmultiplicative arithmetic functions. Both real variable ("elementary")and complex variable ("analytic") methods are employed | ||
650 | 7 | |a MATHEMATICS / Number Theory |2 bisacsh | |
650 | 7 | |a Mathematical analysis |2 fast | |
650 | 7 | |a Number theory |2 fast | |
650 | 7 | |a Nombres, Théorie des |2 rvm | |
650 | 4 | |a Number theory | |
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Analytische Zahlentheorie |0 (DE-588)4001870-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Analytische Zahlentheorie |0 (DE-588)4001870-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Diamond, Harold G. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=129836 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028506225 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=129836 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=129836 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175475001524224 |
---|---|
any_adam_object | |
author | Bateman, P. T. |
author_facet | Bateman, P. T. |
author_role | aut |
author_sort | Bateman, P. T. |
author_variant | p t b pt ptb |
building | Verbundindex |
bvnumber | BV043082034 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)61482715 (DE-599)BVBBV043082034 |
dewey-full | 512.73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.73 |
dewey-search | 512.73 |
dewey-sort | 3512.73 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05286nmm a2200589zc 4500</leader><controlfield tag="001">BV043082034</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812389381</subfield><subfield code="9">978-981-238-938-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812560803</subfield><subfield code="9">978-981-256-080-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812562272</subfield><subfield code="9">978-981-256-227-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812389385</subfield><subfield code="9">981-238-938-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812389385</subfield><subfield code="9">981-238-938-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812560807</subfield><subfield code="9">981-256-080-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812560807</subfield><subfield code="9">981-256-080-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812562273</subfield><subfield code="9">981-256-227-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)61482715</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043082034</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.73</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bateman, P. T.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytic number theory</subfield><subfield code="b">an introductory course</subfield><subfield code="c">Paul T. Bateman, Harold G. Diamond</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">©2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 360 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 353-354) and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Three problems -- 1.2 Asymmetric distribution of quadratic residues -- 1.3 The prime number theorem -- 1.4 Density of squarefree integers -- 1.5 The Riemann zeta function -- 1.6 Notes -- Chapter 2 Calculus of Arithmetic Functions -- 2.1 Arithmetic functions and convolution -- 2.2 Inverses -- 2.3 Convergence -- 2.4 Exponential mapping -- 2.4.1 The 1 function as an exponential -- 2.4.2 Powers and roots -- 2.5 Multiplicative functions -- 2.6 Notes -- Chapter 3 Summatory Functions -- 3.1 Generalities -- 3.2 Estimate of Q(x) 6x/2 -- 3.3 Riemann-Stieltjes integrals -- 3.4 Riemann-Stieltjes integrators -- 3.4.1 Convolution of integrators -- 3.4.2 Generalization of results on arithmetic functions -- 3.5 Stability -- 3.6 Dirichlets hyperbola method -- 3.7 Notes -- Chapter 4 The Distribution of Prime Numbers -- 4.1 General remarks -- 4.2 The Chebyshev function -- 4.3 Mertens estimates -- 4.4 Convergent sums over primes -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 4.5 A lower estimate for Eulers function -- 4.6 Notes -- Chapter 5 An Elementary Proof of the P.N.T. -- 5.1 Selbergs formula -- 5.1.1 Features of Selbergs formula -- 5.2 Transformation of Selbergs formula -- 5.2.1 Calculus for R -- 5.3 Deduction of the P.N.T. -- 5.4 Propositions 8220;equivalent to the P.N.T. -- 5.5 Some consequences of the P.N.T. -- 5.6 Notes -- Chapter 6 Dirichlet Series and Mellin Transforms -- 6.1 The use of transforms -- 6.2 Euler products -- 6.3 Convergence -- 6.3.1 Abscissa of convergence -- 6.3.2 Abscissa of absolute convergence -- 6.4 Uniform convergence -- 6.5 Analyticity -- 6.5.1 Analytic continuation -- 6.5.2 Continuation of zeta -- 6.5.3 Example of analyticity on = -- 6.6 Uniqueness -- 6.6.1 Identifying an arithmetic function -- 6.7 Operational calculus -- 6.8 Landau's oscillation theorem -- 6.9 Notes -- Chapter 7 Inversion Formulas -- 7.1 The use of inversion formulas -- 7.2 The Wiener-Ikehara theorem -- 7.2.1 Example. Counting product representations -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 7.2.2 An O-estimate -- 7.3 A Wiener-Ikehara proof of the P.N.T. -- 7.4 A generalization of the Wiener-Ikehara theorem -- 7.5 The Perron formula -- 7.6 Proof of the Perron formula -- 7.7 Contour deformation in the Perron formula -- 7.7.1 The Fourier series of the sawtooth function -- 7.7.2 Bounded and uniform convergence -- 7.8 A "smoothed" Perron formula -- 7.9 Example. Estimation of [sigma]T(1₂ * 1₃) -- 7.10 Notes -- Chapter 8 The Riemann Zeta Function -- Chapter 9 Primes in Arithmetic Progressions -- Chapter 10 Applications of characters -- Chapter 11 Oscillation theorems -- Chapter 12 Sieves -- Chapter 13 Application of Sieves -- Appendix A. Results from Analysis and Algebra</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This valuable book focuses on a collection of powerful methods ofanalysis that yield deep number-theoretical estimates. Particularattention is given to counting functions of prime numbers andmultiplicative arithmetic functions. Both real variable ("elementary")and complex variable ("analytic") methods are employed</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Number Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nombres, Théorie des</subfield><subfield code="2">rvm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Zahlentheorie</subfield><subfield code="0">(DE-588)4001870-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analytische Zahlentheorie</subfield><subfield code="0">(DE-588)4001870-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Diamond, Harold G.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=129836</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028506225</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=129836</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=129836</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043082034 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:52Z |
institution | BVB |
isbn | 9789812389381 9789812560803 9789812562272 9812389385 9812560807 9812562273 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028506225 |
oclc_num | 61482715 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiii, 360 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | World Scientific |
record_format | marc |
spelling | Bateman, P. T. Verfasser aut Analytic number theory an introductory course Paul T. Bateman, Harold G. Diamond New Jersey World Scientific ©2004 1 Online-Ressource (xiii, 360 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 353-354) and indexes Cover -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Three problems -- 1.2 Asymmetric distribution of quadratic residues -- 1.3 The prime number theorem -- 1.4 Density of squarefree integers -- 1.5 The Riemann zeta function -- 1.6 Notes -- Chapter 2 Calculus of Arithmetic Functions -- 2.1 Arithmetic functions and convolution -- 2.2 Inverses -- 2.3 Convergence -- 2.4 Exponential mapping -- 2.4.1 The 1 function as an exponential -- 2.4.2 Powers and roots -- 2.5 Multiplicative functions -- 2.6 Notes -- Chapter 3 Summatory Functions -- 3.1 Generalities -- 3.2 Estimate of Q(x) 6x/2 -- 3.3 Riemann-Stieltjes integrals -- 3.4 Riemann-Stieltjes integrators -- 3.4.1 Convolution of integrators -- 3.4.2 Generalization of results on arithmetic functions -- 3.5 Stability -- 3.6 Dirichlets hyperbola method -- 3.7 Notes -- Chapter 4 The Distribution of Prime Numbers -- 4.1 General remarks -- 4.2 The Chebyshev function -- 4.3 Mertens estimates -- 4.4 Convergent sums over primes -- - 4.5 A lower estimate for Eulers function -- 4.6 Notes -- Chapter 5 An Elementary Proof of the P.N.T. -- 5.1 Selbergs formula -- 5.1.1 Features of Selbergs formula -- 5.2 Transformation of Selbergs formula -- 5.2.1 Calculus for R -- 5.3 Deduction of the P.N.T. -- 5.4 Propositions 8220;equivalent to the P.N.T. -- 5.5 Some consequences of the P.N.T. -- 5.6 Notes -- Chapter 6 Dirichlet Series and Mellin Transforms -- 6.1 The use of transforms -- 6.2 Euler products -- 6.3 Convergence -- 6.3.1 Abscissa of convergence -- 6.3.2 Abscissa of absolute convergence -- 6.4 Uniform convergence -- 6.5 Analyticity -- 6.5.1 Analytic continuation -- 6.5.2 Continuation of zeta -- 6.5.3 Example of analyticity on = -- 6.6 Uniqueness -- 6.6.1 Identifying an arithmetic function -- 6.7 Operational calculus -- 6.8 Landau's oscillation theorem -- 6.9 Notes -- Chapter 7 Inversion Formulas -- 7.1 The use of inversion formulas -- 7.2 The Wiener-Ikehara theorem -- 7.2.1 Example. Counting product representations -- - 7.2.2 An O-estimate -- 7.3 A Wiener-Ikehara proof of the P.N.T. -- 7.4 A generalization of the Wiener-Ikehara theorem -- 7.5 The Perron formula -- 7.6 Proof of the Perron formula -- 7.7 Contour deformation in the Perron formula -- 7.7.1 The Fourier series of the sawtooth function -- 7.7.2 Bounded and uniform convergence -- 7.8 A "smoothed" Perron formula -- 7.9 Example. Estimation of [sigma]T(1₂ * 1₃) -- 7.10 Notes -- Chapter 8 The Riemann Zeta Function -- Chapter 9 Primes in Arithmetic Progressions -- Chapter 10 Applications of characters -- Chapter 11 Oscillation theorems -- Chapter 12 Sieves -- Chapter 13 Application of Sieves -- Appendix A. Results from Analysis and Algebra This valuable book focuses on a collection of powerful methods ofanalysis that yield deep number-theoretical estimates. Particularattention is given to counting functions of prime numbers andmultiplicative arithmetic functions. Both real variable ("elementary")and complex variable ("analytic") methods are employed MATHEMATICS / Number Theory bisacsh Mathematical analysis fast Number theory fast Nombres, Théorie des rvm Number theory Mathematical analysis Analytische Zahlentheorie (DE-588)4001870-2 gnd rswk-swf Analytische Zahlentheorie (DE-588)4001870-2 s 1\p DE-604 Diamond, Harold G. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=129836 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bateman, P. T. Analytic number theory an introductory course MATHEMATICS / Number Theory bisacsh Mathematical analysis fast Number theory fast Nombres, Théorie des rvm Number theory Mathematical analysis Analytische Zahlentheorie (DE-588)4001870-2 gnd |
subject_GND | (DE-588)4001870-2 |
title | Analytic number theory an introductory course |
title_auth | Analytic number theory an introductory course |
title_exact_search | Analytic number theory an introductory course |
title_full | Analytic number theory an introductory course Paul T. Bateman, Harold G. Diamond |
title_fullStr | Analytic number theory an introductory course Paul T. Bateman, Harold G. Diamond |
title_full_unstemmed | Analytic number theory an introductory course Paul T. Bateman, Harold G. Diamond |
title_short | Analytic number theory |
title_sort | analytic number theory an introductory course |
title_sub | an introductory course |
topic | MATHEMATICS / Number Theory bisacsh Mathematical analysis fast Number theory fast Nombres, Théorie des rvm Number theory Mathematical analysis Analytische Zahlentheorie (DE-588)4001870-2 gnd |
topic_facet | MATHEMATICS / Number Theory Mathematical analysis Number theory Nombres, Théorie des Analytische Zahlentheorie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=129836 |
work_keys_str_mv | AT batemanpt analyticnumbertheoryanintroductorycourse AT diamondharoldg analyticnumbertheoryanintroductorycourse |